首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
RNA interference (RNAi) is emerging as a powerful approach in cancer treatment. siRNA is an important RNAi tool that can be designed to specifically silence the expression of genes involved in drug resistance and chemotherapeutic inactivity. Combining siRNA and other therapeutic agents can overcome the multidrug resistance (MDR) phenomenon by simultaneously silencing genes and enhancing chemotherapeutic activity. Moreover, the therapeutic efficiency of anticancer drugs can be significantly improved by additive or synergistic effects induced by siRNA and combined therapies. Co-delivery of these diverse anticancer agents, however, requires specially designed nanocarriers. This review highlights the recent trends in siRNA/anticancer drug co-delivery systems under the major categories of liposomes/lipid, polymeric and inorganic nanoplatforms. The objective is to discuss the strategies for nanocarrier-based co-delivery systems using siRNA/anticancer drug combinations, emphasizing various siRNA targets that help overcome MDR and enhance therapeutic efficiency.  相似文献   

2.
With the recent FDA approval of the first siRNA‐derived therapeutic, RNA interference (RNAi)‐mediated gene therapy is undergoing a transition from research to the clinical space. The primary obstacle to realization of RNAi therapy has been the delivery of oligonucleotide payloads. Therefore, the main aims is to identify and describe key design features needed for nanoscale vehicles to achieve effective delivery of siRNA‐mediated gene silencing agents in vivo. The problem is broken into three elements: 1) protection of siRNA from degradation and clearance; 2) selective homing to target cell types; and 3) cytoplasmic release of the siRNA payload by escaping or bypassing endocytic uptake. The in vitro and in vivo gene silencing efficiency values that have been reported in publications over the past decade are quantitatively summarized by material type (lipid, polymer, metal, mesoporous silica, and porous silicon), and the overall trends in research publication and in clinical translation are discussed to reflect on the direction of the RNAi therapeutics field.  相似文献   

3.
Small interfering RNA (siRNA) is an attractive therapeutic candidate for sequencespecific gene silencing to treat incurable diseases using small molecule drugs.However,its efficient intracellular delivery has remained a challenge.Here,we have developed a highly biocompatible fluorescent carbon dot (CD),and demonstrate a functional siRNA delivery system that induces efficient gene knockdown in vitro and in vivo.We found that CD nanoparticles (NPs) enhance the cellular uptake of siRNA,via endocytosis in tumor cells,with low cytotoxicity and unexpected immune responses.Real-time study of fluorescence imaging in live cells shows that CD NPs favorably localize in cytoplasm and successfully release siRNA within 12 h.Moreover,we demonstrate that CD NP-mediated siRNA delivery significantly silences green fluorescence protein (GFP) expression and inhibits tumor growth in a breast cancer cell xenograft mouse model of tumor-specific therapy.We have developed a multi functional siRNA delivery vehicle enabling simultaneous bioimaging and efficient downregulation of gene expression,that shows excellent potential for gene therapy.  相似文献   

4.
Lipid nanoparticles (LNPs) are the most advanced nonviral platforms for small interfering RNA (siRNA) delivery that are clinically approved. These LNPs, based on ionizable lipids, are found in the liver and are now gaining much attention in the field of RNA therapeutics. The previous generation of ionizable lipids varies in linker moieties, which greatly influences in vivo gene silencing efficiency. Here novel ionizable amino lipids based on the linker moieties such as hydrazine, hydroxylamine, and ethanolamine are designed and synthesized. These lipids are formulated into LNPs and screened for their efficiency to deliver siRNAs into leukocytes, which are among the hardest to transfect cell types. Two potent lipids based on their in vitro gene silencing efficiencies are also identified. These lipids are further evaluated for their biodistribution profile, efficient gene silencing, liver toxicity, and potential immune activation in mice. A robust gene silencing is also found in primary lymphocytes when one of these lipids is formulated into LNPs with a pan leukocyte selective targeting agent (β7 integrin). Taken together, these lipids have the potential to open new avenues in delivering RNAs into leukocytes.  相似文献   

5.
Wang Y  Gao S  Ye WH  Yoon HS  Yang YY 《Nature materials》2006,5(10):791-796
Non-viral gene-delivery systems are safer to use and easier to produce than viral vectors, but their comparatively low transfection efficiency has limited their applications. Co-delivery of drugs and DNA has been proposed to enhance gene expression or to achieve the synergistic/combined effect of drug and gene therapies. Attempts have been made to deliver drugs and DNA simultaneously using liposomes. Here we report cationic core-shell nanoparticles that were self-assembled from a biodegradable amphiphilic copolymer. These nanoparticles offer advantages over liposomes, as they are easier to fabricate, and are more readily subject to modulation of their size and degree of positive charge. More importantly, they achieve high gene-transfection efficiency and the possibility of co-delivering drugs and genes to the same cells. Enhanced gene transfection with the co-delivery of paclitaxel has been demonstrated by in vitro and in vivo studies. In particular, the co-delivery of paclitaxel with an interleukin-12-encoded plasmid using these nanoparticles suppressed cancer growth more efficiently than the delivery of either paclitaxel or the plasmid in a 4T1 mouse breast cancer model. Moreover, the co-delivery of paclitaxel with Bcl-2-targeted small interfering RNA (siRNA) increased cytotoxicity in MDA-MB-231 human breast cancer cells.  相似文献   

6.
Efficient delivery of genetic material to primary cells remains challenging. Here, efficient transfer of genetic material is presented using synthetic biodegradable nanocarriers, resembling extracellular vesicles in their biomechanical properties. This is based on two main technological achievements: generation of soft biodegradable polyelectrolyte capsules in nanosize and efficient application of the nanocapsules for co‐transfer of different RNAs to tumor cell lines and primary cells, including hematopoietic progenitor cells and primary T cells. Near to 100% efficiency is reached using only 2.5 × 10?4 pmol of siRNA, and 1 × 10?3 nmol of mRNA per cell, which is several magnitude orders below the amounts reported for any of methods published so far. The data show that biodegradable nanocapsules represent a universal and highly efficient biomimetic platform for the transfer of genetic material with the utmost potential to revolutionize gene transfer technology in vitro and in vivo.  相似文献   

7.
RNA interference (RNAi) is an emerging technology in which the introduction of double-stranded RNA (dsRNA) into a diverse range of organisms and cell types causes degradation of the complementary mRNA. It offers a broad spectrum of applications in both biological and medical research. Small interference RNA (siRNA) was recently explored for its therapeutical potential. However, the drug delivery of siRNA oligos is very novel and is in great need of future research. To this end, a biodegradable poly(D,L-lactide-co-glycolide) (PLGA) nanoparticle drug carrier system was prepared to load siRNA oligos with desired physicochemical properties. The nanoparticles were characterized by scanning electron microscopy and laser diffraction particle sizer. The delivery of siRNA into the targeted 293T cells was observed using fluorescent-labeled double-stranded Cy3-oligos. The model siRNA oligos, si-GFP-RNA, were also successfully loaded into PLGA nanoparticles and delivered in 293T cells. The gene silencing effect and the inhibition of GFP expression were investigated using fluorescent microscopy. Both positive and negative controls were used to compare with the new siRNA nanoparticle delivery system. It was found that nanoparticles offered both effective delivery of siRNA and prominent GFP gene silencing effect. Compared to conventional carrier systems, the new biodegradable polymeric nanoparticle system may also offer improved formulation stability, which is practically beneficial and may be used in the future clinical studies of siRNA therapeutics.  相似文献   

8.
Uncontrolled inflammation is a major pathological factor underlying a range of diseases including autoimmune conditions, cardiovascular disease, and cancer. Improving localized delivery of immunosuppressive drugs to inflamed tissue in a non-invasive manner offers significant promise to reduce severe side effects caused by systemic administration. Here, a neutrophil-mediated delivery system able to transport drug-loaded nanocarriers to inflamed tissue by exploiting the inherent ability of neutrophils to migrate to inflammatory tissue is reported. This hybrid system (neutrophils loaded with liposomes ex vivo) efficiently migrates in vitro following an inflammatory chemokine gradient. Furthermore, the triggered release of loaded liposomes and reuptake by target macrophages is studied. The migratory behavior of liposome-loaded neutrophils is confirmed in vivo by demonstrating the delivery of drug-loaded liposomes to an inflamed skeletal muscle in mice. A single low-dose injection of the hybrid system locally reduces inflammatory cytokine levels. Biodistribution of liposome-loaded neutrophils in a human-disease-relevant myocardial ischemia reperfusion injury mouse model after i.v. injection confirms the ability of injected neutrophils to carry loaded liposomes to inflammation sites. This strategy shows the potential of nanocarrier-loaded neutrophils as a universal platform to deliver anti-inflammatory drugs to promote tissue regeneration in inflammatory diseases.  相似文献   

9.
Small interfering RNA (siRNA) offers a highly selective and effective pharmaceutical for various life‐threatening diseases, including cancers. The clinical translation of siRNA is, however, challenged by its short plasma life, poor cell uptake, and cumbersome intracellular trafficking. Here, cNGQGEQc peptide‐functionalized reversibly crosslinked chimaeric polymersomes (cNGQ/RCCPs) is shown to mediate high‐efficiency targeted delivery of Polo‐like kinase1 specific siRNA (siPLK1) to orthotopic human lung cancer in nude mice. Strikingly, siRNA is completely and tightly loaded into the aqueous lumen of the polymersomes at an unprecedentedly low N/P ratio of 0.45. cNGQ/RCCPs loaded with firefly luciferase specific siRNA (siGL3) or siPLK1 are efficiently taken up by α3β1‐integrin‐overexpressing A549 lung cancer cells and quickly release the payloads to the cytoplasm, inducing highly potent and sequence‐specific gene silencing in vitro. The in vivo studies using nude mice bearing orthotopic A549 human lung tumors reveal that siPLK1‐loaded cNGQ/RCCPs boost long circulation, superb tumor accumulation and selectivity, effective suppression of tumor growth, and significantly improved survival time. These virus‐mimicking chimaeric polymersomes provide a robust and potent platform for targeted cancer siRNA therapy.  相似文献   

10.
11.
Engineering Nanocarriers for siRNA Delivery   总被引:1,自引:0,他引:1  
The discovery of RNA interference has revitalized the long ongoing pursuit of gene therapy for the treatment of diseases. Nevertheless, despite promising results from experimental studies, there remains a pressing need for the development of nanocarriers that are clinically-relevant, biocompatible, efficient, and that can be tailored to specific disease targets. This review surveys the broad spectrum of nanomaterials and their functional add-ons, and aims to provide a guide towards engineering nanocarriers for effective siRNA delivery.  相似文献   

12.
Molecular therapy using a small interfering RNA (siRNA) has shown promise in the development of novel therapeutics. Various formulations have been used for in vivo delivery of siRNAs. However, the stability of short double‐stranded RNA molecules in the blood and efficiency of siRNA delivery into target organs or tissues following systemic administration have been the major issues that limit applications of siRNA in human patients. In this study, multifunctional siRNA delivery nanoparticles are developed that combine imaging capability of nanoparticles with urokinase plasminogen activator receptor‐targeted delivery of siRNA expressing DNA nanocassettes. This theranostic nanoparticle platform consists of a nanoparticle conjugated with targeting ligands and double‐stranded DNA nanocassettes containing a U6 promoter and a shRNA gene for in vivo siRNA expression. Targeted delivery and gene silencing efficiency of firefly luciferase siRNA nanogenerators are demonstrated in tumor cells and in animal tumor models. Delivery of survivin siRNA expressing nanocassettes into tumor cells induces apoptotic cell death and sensitizes cells to chemotherapy drugs. The ability of expression of siRNAs from multiple nanocassettes conjugated to a single nanoparticle following receptor‐mediated internalization should enhance the therapeutic effect of the siRNA‐mediated cancer therapy.  相似文献   

13.
Small-interfering RNA (siRNA) is an emerging class of therapeutics, which works by regulating the expression of a specific gene involved in disease progression. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. In this study, a nonviral nanoparticle gene carrier is developed and its efficiency for siRNA delivery and transfection is validated at both in vitro and in vivo levels. Such a nanocarrier, abbreviated as Alkyl-PEI2k-IO, was constructed with a core of iron oxide nanoparticles (IOs) and a shell of alkylated polyethyleneimine of 2000 Da [corrected] molecualr weight (Alkyl-PEI2k). It is found to be able to bind with siRNA, resulting in well-dispersed nanoparticles with a controlled clustering structure and narrow size distribution. Electrophoresis studies show that the Alkyl-PEI2k-IOs could retard siRNA completely at N:P ratios (i.e., PEI nitrogen to nucleic acid phosphate) above 10, protect siRNA from enzymatic degradation in serum, and release complexed siRNA efficiently in the presence of polyanionic heparin. The knockdown efficiency of the siRNA-loaded nanocarriers is assessed with 4T1 cells stably expressing luciferase (fluc-4T1) and further, with a fluc-4T1 xenograft model. Significant down-regulation of luciferase is observed, and unlike high-molecular-weight analogues, the Alkyl-PEI2k-coated IOs show good biocompatibility. In conclusion, Alkyl-PEI2k-IOs demonstrate highly efficient delivery of siRNA and an innocuous toxic profile, making it a potential carrier for gene therapy.  相似文献   

14.
Self‐assembled DNA nanostructures have emerged as a type of nano‐biomaterials with precise structures, versatile functions and numerous applications. One particularly promising application of these DNA nanostructures is to develop universal nanocarriers for smart and targeted drug delivery. DNA is the genetic material in nature, and inherently biocompatible. Nevertheless, cell membranes are barely permeable to naked DNA molecules, either single‐ or double‐ stranded; transport across the cell membrane is only possible with the assistance of transfection agents. Interestingly, recent studies revealed that many DNA nanostructures could readily go into cells with high cell uptake efficiency. In this Progress Report, we will review recent advances on using various DNA nanostructures, e.g., DNA nanotubes, DNA tetrahedra, and DNA origami nanorobot, as drug delivery nanocarriers, and demonstrate several examples aiming at therapeutic applications with CpG‐based immunostimulatory and siRNA‐based gene silencing oligonucleotides.  相似文献   

15.
α-Synuclein (α-syn) oligomers are considered major molecules responsible for the onset of Parkinson's disease and dementia with Lewy bodies. α-Syn oligomers thus serve as an important target for the development of drugs and diagnostic tests for neurodegenerative diseases. In this paper we report on the identification of DNA aptamers that bind to soluble α-syn oligomers. A competitive screening method based on aptamer blotting was used for the selection of α-syn oligomer-specific aptamers. This approach resulted in the identification of eight aptamers that specifically bind to α-syn oligomers among α-syn monomers, oligomers, and fibrils. Interestingly, the aptamers also bound to amyloid β oligomers, which are strongly associated with the development of Alzheimer's disease. The results of this study support the hypothesis that amyloid oligomers share a common structure. Oligomer-binding aptamers may serve as powerful analytical tools for the design and development of drugs and diagnostic tests for neurodegenerative diseases.  相似文献   

16.
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system offers great opportunities for the treatment of numerous diseases by precise modification of the genome. The functional unit of the system is represented by Cas9/sgRNA ribonucleoproteins (RNP), which mediate sequence-specific cleavage of DNA. For therapeutic applications, efficient and cell-specific transport into target cells is essential. Here, Cas9 RNP nanocarriers are described, which are based on lipid-modified oligoamino amides and folic acid (FolA)-PEG to realize receptor-mediated uptake and gene editing in cancer cells. In vitro studies confirm strongly enhanced potency of receptor-mediated delivery, and the nanocarriers enable efficient knockout of GFP and two immune checkpoint genes, PD-L1 and PVR, at low nanomolar concentrations. Compared with non-targeted nanoparticles, FolA-modified nanocarriers achieve substantially higher gene editing including dual PD-L1/PVR gene disruption after injection into CT26 tumors in vivo. In the syngeneic mouse model, dual disruption of PD-L1 and PVR leads to CD8+ T cell recruitment and distinct CT26 tumor growth inhibition, clearly superior to the individual knockouts alone. The reported Cas9 RNP nanocarriers represent a versatile platform for potent and receptor-specific gene editing. In addition, the study demonstrates a promising strategy for cancer immunotherapy by permanent and combined immune checkpoint disruption.  相似文献   

17.
18.
Nucleic acid‐based therapies rely on efficient formulations for nucleic acid protection and delivery. As nonviral strategies, polymeric and lipid‐based nanoparticles have been introduced; however, biological efficacy and biocompatibility as well as poor storage properties due to colloidal instability and their unavailability as ready‐to‐use systems are still major issues. Polyethylenimine is the most widely explored and promising candidate for gene delivery. Polyethylenimine‐based polyplexes and their combination with liposomes, lipopolyplexes, are efficient for DNA or siRNA delivery in vitro and in vivo. In this study, a highly potent spray‐dried nanoparticle‐in‐microparticle delivery system is presented for the encapsulation of polyethylenimine‐based polyplexes and lipopolyplexes into poly(vinyl alcohol) microparticles, without requiring additional stabilizing agents. This easy‐to‐handle gene delivery device allows prolonged nanoparticle storage and protection at ambient temperature. Biological analyses reveal further advantages regarding profoundly reduced cytotoxicity and enhanced transfection efficacies of polyethylenimine‐based nanoparticles from the nanoparticle‐in‐microparticle delivery system over their freshly prepared counterparts, as determined in various cell lines. Importantly, this nanoparticle‐in‐microparticle delivery system is demonstrated as ready‐to‐use dry powder to be an efficient device for the inhalative delivery of polyethylenimine‐based lipopolyplexes in vivo, as shown by transgene expression in mice after only one administration.  相似文献   

19.
Using small interfering RNA (siRNA) to regulate gene expression is an emerging strategy for stem cell manipulation to improve stem cell therapy. However, conventional methods of siRNA delivery into stem cells based on solution‐mediated transfection are limited due to low transfection efficiency and insufficient duration of cell‐siRNA contact during lengthy culturing protocols. To overcome these limitations, a bio‐inspired polymer‐mediated reverse transfection system is developed consisting of implantable poly(lactic‐co‐glycolic acid) (PLGA) scaffolds functionalized with siRNA‐lipidoid nanoparticle (sLNP) complexes via polydopamine (pDA) coating. Immobilized sLNP complexes are stably maintained without any loss of siRNA on the pDA‐coated scaffolds for 2 weeks, likely due to the formation of strong covalent bonds between amine groups of sLNP and catechol group of pDA. siRNA reverse transfection with the pDA‐sLNP‐PLGA system does not exhibit cytotoxicity and induces efficient silencing of an osteogenesis inhibitor gene in human adipose‐derived stem cells (hADSCs), resulting in enhanced osteogenic differentiation of hADSCs. Finally, hADSCs osteogenically committed on the pDA‐sLNP‐PLGA scaffolds enhanced bone formation in a mouse model of critical‐sized bone defect. Therefore, the bio‐inspired reverse transfection system can provide an all‐in‐one platform for genetic modification, differentiation, and transplantation of stem cells, simultaneously enabling both stem cell manipulation and tissue engineering.  相似文献   

20.
Double-walled carbon nanotubes (DWNTs) prepared by catalytic chemical vapour deposition were functionalized in such a way that they were optimally designed as a nano-vector for the delivery of small interfering RNA (siRNA), which is of great interest for biomedical research and drug development. DWNTs were initially oxidized and coated with a polypeptide (Poly(Lys:Phe)), which was then conjugated to thiol-modified siRNA using a heterobifunctional cross-linker. The obtained oxDWNT-siRNA was characterized by Raman spectroscopy inside and outside a biological environment (mammalian cells). Uptake of the custom-designed nanotubes was not associated with detectable biochemical perturbations in cultured cells, but transfection of cells with DWNTs loaded with siRNA targeting the green fluorescent protein (GFP) gene, serving as a model system, as well as with therapeutic siRNA targeting the survivin gene, led to a significant gene silencing effect, and in the latter case a resulting apoptotic effect in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号