首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The localization of gp130, the signal transducing receptor component used in common for interleukin (IL)-6, IL-11, ciliary neurotrophic factor (CNTF), LIF and OSM, in the rat brain was demonstrated by immunohistochemistry using an antibody specific to gp130. The gp130 immunoreactivity was observed in both glial and neuronal cells. Two distinct neuronal staining patterns were observed. The first showed neuropil staining, observed mainly in telencephalic structures including the hippocampus, cerebral cortex and caudate-putamen. The second pattern was observed on the cytoplasmic membrane of neuronal somata and was found primarily in the lower brainstem, in the large neurons of the reticular formation, and in spinal and cranial motor neurons. Electron-microscopic analysis revealed that both types of gp130 immunoreactivity were primarily associated with the cytoplasmic membrane and were not localized exactly at synaptic sites. Further, gp130 immunoreactivity was also observed in the oligodendrocytes and subependymal zone. These widespread but characteristic patterns of gp130 immunoreactivity overlap well with those of IL-6 receptor and CNTF alpha chains, suggesting a role of cytokines and growth factors such as IL-6 and CNTF via gp130 in certain specific regions of the brain.  相似文献   

2.
The coordination and regulation of immune responses are primarily mediated by cytokines that bind to specific cell surface receptors. Glycoprotein 130 (gp130) belongs to the family of class I cytokine receptors and is the common signal-transducing receptor subunit shared by the so-called IL-6 type cytokines (IL-6, IL-11, ciliary neurotrophic factor, leukemia inhibitory factor, oncostatin M, and cardiotrophin-1). The inflammatory cytokines IL-6 and IL-11 induce gp130 homodimerization after binding to their specific alpha receptors, which leads to the activation of the Janus kinase/STAT signal transduction pathway. A molecular model of IL-6/IL-6R/gp130, which is based on the structure of the growth hormone/growth hormone receptor complex, allowed the selection of several amino acids located in the cytokine-binding module of gp130 for mutagenesis. The mutants were analyzed with regard to IL-6- or IL-11-induced STAT activation and ligand binding. It was found that Y190 and F191 are essential for the interaction of gp130 with IL-6 as well as IL-11, suggesting a common mode of recognition of helical cytokines by class I cytokine receptors. Furthermore, the requirement of the gp130 N-terminal Ig-like domain for ligand binding and signal transduction was demonstrated by the use of deletion mutants. Thus, besides the observed analogy to the growth hormone/growth hormone receptor complex, there is a substantial difference in the mechanism of receptor engagement by cytokines that signal via gp130.  相似文献   

3.
4.
We have expressed a soluble N-glycosylated form of the murine interleukin-11 (IL-11) receptor alpha-chain (sIL-11R) and examined signaling in cells expressing the gp130 molecule. In the presence of gp130 but not the transmembrane IL-11R, the sIL-11R mediated IL-11-dependent differentiation of M1 leukemic cells and proliferation in Ba/F3 cells. Early intracellular events stimulated by the sIL-11R including phosphorylation of gp130, STAT 3, and SHP-2 were similar to signaling through the transmembrane IL-11R. IL-11 bound to sIL-11R with low affinity (kd 10 to 50 nmol/L). Binding of sIL-11R to gp130 was IL-11 dependent with intermediate affinity (kd 1.5 to 3.0 nmol/L). However, the concentration of IL-11 required for signaling through the sIL-11R was 10- to 20-fold greater than that required for cells expressing the transmembrane IL-11R and gp130 in the absence of sIL-11R. Furthermore, the sIL-11R was capable of antagonizing the activity of IL-11 when tested on cells expressing the transmembrane IL-11R and gp130. We propose that the observed IL-11 antagonism by the sIL-11R may depend on limiting numbers of gp130 molecules on cells already expressing the transmembrane IL-11R.  相似文献   

5.
6.
7.
Oncostatin M (OSM) is a member of a family of cytokines that includes ciliary neurotrophic factor, interleukin-6, interleukin-11, cardiotrophin-1, and leukemia inhibitory factor (LIF). The receptors for these cytokines consist of a common signaling subunit, gp130, to which other subunits are added to modify ligand specificity. We report here the isolation and characterization of a cDNA encoding a subunit of the mouse OSM receptor. In NIH 3T3 cells (which endogenously express gp130, LIF receptor beta [LIFRbeta], and the protein product, c12, of the cDNA described here), mouse LIF, human LIF, and human OSM signaled through receptors containing the LIFRbeta and gp130 but not through the mouse OSM receptor. Mouse OSM, however, signaled only through a c12-gp130 complex; it did not use the LIF receptor. Binding studies demonstrated that mouse OSM associated directly with either the c12 protein or gp130. These data highlight the species-specific differences in receptor utilization and signal transduction between mouse and human OSM. In mouse cells, only mouse OSM is capable of activating the mouse OSM receptor; human OSM instead activates the LIF receptor. Therefore, these data suggest that all previous studies with human OSM in mouse systems did not elucidate the biology of OSM but, rather, reflected the biological actions of LIF.  相似文献   

8.
9.
Stimulation of the gp130 signaling pathway by IL-6 is known to contribute significantly to hematopoietic expansion in vitro, mostly in combination with other cytokines. In the present study we have investigated whether a similar effect can be observed also in vivo using short-term assays in which irradiated mice were analyzed for repopulation of lymphoid organs. Mice were injected with a combination of soluble IL-6Ralpha either with wild-type (wt) human IL-6 or with an IL-6 variant, called K-7/D-6, that shows a 70-fold higher IL-6Ralpha affinity. We observed that while wt IL-6 was able to induce a partial effect only in combination with IL-3, K-7/D-6 bypassed the need for IL-3 and yielded complete recovery. In lethally irradiated mice reconstituted with syngeneic bone marrow cells K-7/D-6 strongly accelerated the repopulation of thymus and spleen and hastened blood neutrophil recovery. These results underscore the potential of the gp130 signaling pathway in hematopoietic reconstitution after myeloablative regimens and open the possibility to fully exploit it with a super-active IL-6 variant.  相似文献   

10.
Proinflammatory cytokines are implicated as effector molecules in the pathogenesis of IDDM. Interleukin-6 (IL-6) alone or in combination with IL-1beta inhibits glucose-stimulated insulin release from isolated rat pancreatic islets by unknown mechanisms. Here we investigated 1) if the effects of IL-6 are mimicked by ciliary neurotrophic factor (CNTF), another member of the IL-6 family of cytokines signaling via gp130, 2) the possible cellular mechanisms for these effects, and 3) if islet endocrine cells are a source of CNTF. CNTF (20 ng/ml) potentiated IL-1beta-mediated (5-150 pg/ml) nitric oxide (NO) synthesis from neonatal Wistar rat islets by 31-116%, inhibition of accumulated insulin release by 34-49%, and inhibition insulin response to a 2-h glucose challenge by 31-36%. CNTF potentiated IL-1beta-mediated NO synthesis from RIN-5AH cells by 83%, and IL-1beta induced islet inducible NO-synthase (iNOS) mRNA expression fourfold. IL-6 (10 ng/ml) also potentiated IL-1beta-mediated NO synthesis and inhibition of insulin release, whereas beta-nerve growth factor (NGF) (5 or 50 ng/ml) had no effect. mRNA for CNTF was expressed in rat islets and in islet cell lines. In conclusion, CNTF is constitutively expressed in pancreatic beta-cells and potentiates the beta-cell inhibitory effect of IL-1beta in association with increased iNOS expression and NO synthesis, an effect shared by IL-6 but not by beta-NGF. These findings indicate that signaling via gp130 influences islet NO synthesis associated with iNOS expression. We hypothesize that CNTF released from destroyed beta-cells during the inflammatory islet lesion leading to IDDM may potentiate IL-1beta action on the beta-cells.  相似文献   

11.
gP130 transducing receptor is involved in the formation of high affinity receptors for the cytokines of the interleukin-6 (IL-6) family. Recruitment of gp130 by IL-6 associated to its receptor leads to the dimerization of the transducing component. In the present study we did characterize the B-S12 monoclonal antibody raised against gp130 and able to elicit IL-6 type biological activities. B-S12 antibody triggered strongly the proliferation of TF1 and XGI hematopoietic cell lines and was able to increase the synthesis of acute phase proteins in HepG2 hepatoma cell line. B-S12 also behaved as a synergistic factor with granulocyte-macrophage colony-stimulating factor for both proliferation and differentiation of CD34-positive hematopoietic cell progenitors. By using a symmetric enzyme-linked immunosorbent assay, allowing the detection of dimeric forms of soluble gp130, we found that addition of B-S12 to gp130 led to its dimerization. Analysis of the tyrosine phosphorylation events in gp130 and Jak kinase family members revealed that B-S12 quickly induced the phosphorylation of gp130 in a neural derived cell line, and that Jak1 and Jak2 were also recruited. In conclusion, we show that gp130 cross-linking with the B-S12 monoclonal antibody was sufficient to generate functional IL-6 type responses in hematopoietic, neural, and hepatic cells.  相似文献   

12.
13.
Leukemia inhibitory factor (LIF) induces a variety of disparate biological responses in different cell types. These responses are thought to be mediated through the functional LIF receptor (LIFR), consisting of a heterodimeric complex of LIFR alpha-chain (LIFRalpha) and gp130. The present study investigated the relative capacity of the cytoplasmic domains of each receptor subunit to signal particular responses in several cell types. To monitor the signaling potential of LIFRalpha and gp130 individually, we constructed chimeric receptors by linking the extracellular domain of granulocyte colony-stimulating factor receptor (GCSFR) to the transmembrane and cytoplasmic regions of either LIFRalpha or gp130. Both chimeric receptors and the full-length GCSFR in expressed in M1 myeloid leukemic cells to measure differentiation induction, in embryonic stem cells to measure differentiation inhibition, and in Ba/F3 cells to measure cell proliferation. Our results demonstrated that whereas GCSFR-gp130 receptor homodimer mediated a GCSF-induced signal in all three cell types, the GCSFR-LIFRalpha receptor homodimer was only functional in embryonic stem cells. These findings suggest that the signaling potential of gp130 and LIFRalpha cytoplasmic domains may differ depending upon the tissue and cellular response initiated.  相似文献   

14.
Soluble receptors for several cytokines have been detected in body fluids and are believed to modulate the cytokine response by binding the ligand and thereby reducing its bioavailability. In the case of IL-6, the situation is more complex. The receptor consists of two components, including a ligand-binding alpha-subunit (IL-6R, gp80, or CD126), which in its soluble (s) form (sIL-6R) acts agonistically by making the ligand accessible to the second subunit, the signal transducer gp130 (CD130). Soluble forms of both receptor subunits are present in human blood. Gel filtration of iodinated IL-6 that had been incubated with human serum revealed that IL-6 is partially trapped in IL-6/sIL-6R/sgp130 ternary complexes. sgp130 from human plasma was enriched by immunoaffinity chromatography and identified as a 100-kDa protein. Functionally equivalent rsgp130 was produced in baculovirus-infected insect cells to study its antagonistic potential on four different cell types. It was found that in situations in which cells lacking membrane-bound IL-6R were stimulated with IL-6/sIL-6R complexes, sgp130 was a much more potent antagonist than it was on IL-6R-positive cells stimulated with IL-6 alone. In the latter case, the neutralizing activity of sgp130 could be markedly enhanced by addition of sIL-6R. As a consequence of these findings, sIL-6R of human plasma must be regarded as an antagonistic molecule that enhances the inhibitory activity of sgp130. Furthermore, in combination with sIL-6R, sgp130 is a promising candidate for the development of IL-6 antagonists.  相似文献   

15.
BACKGROUND: The mechanisms of drug resistance associated with advanced, hormone-independent prostate carcinoma are poorly understood. The human prostate carcinoma PC-3 cell line, derived from a metastatic tumor and lacking androgen receptors, represents a useful model to investigate drug resistance. METHODS: The effects of oncostatin M (OM), antiinterleukin-6 (IL-6) treatment, or interference with the gp130-mediated signaling on etoposide- or cisplatin-mediated cytotoxicity were investigated. RESULTS: Both endogenous and exogenous IL-6 and exogenous OM up-regulated cell growth and enhanced resistance of PC-3 tumor cells to both etoposide and cisplatin. The influence of IL-6 is controlled by treating PC-3 tumor cells with anti-IL-6 neutralizing antibody and, more efficiently, by a mutated IL-6, Sant7. Sant7 has a high affinity binding to the IL-6 receptor-alpha (IL-6Ralpha) subunit, but does not bind to the signaling subunit gp130; therefore, it behaves as a receptor antagonist. Both IL-6- and OM-mediated effects are inhibited by the treatment of PC-3 with an antisense oligodeoxynucleotide against gp130, the protein kinase inhibitor genistein (GNS), or the monoterpene perillic acid (PA), a posttranslational inhibitor of p21ras isoprenylation. CONCLUSIONS: These results demonstrate the protective roles in drug sensitivity of IL-6 and OM through signaling of the common chain gp130 and, most likely, a downstream ras-dependent pathway in PC-3 tumor cells. These findings suggest the potential clinical application of anticytokine therapy or interference with gp130 signaling in the treatment of drug resistant prostate carcinoma.  相似文献   

16.
The helical cytokine interleukin (IL) 6 and its specific binding subunit IL-6R alpha form a 1:1 complex which, by promoting homodimerization of the signalling subunit gp130 on the surface of target cells, triggers intracellular responses. We expressed differently tagged forms of gp130 and used them in solution-phase binding assays to show that the soluble extracellular domains of gp130 undergo dimerization in the absence of membranes. In vitro receptor assembly reactions were also performed in the presence of two sets of IL-6 variants carrying amino acid substitutions in two distinct areas of the cytokine surface (site 2, comprising exposed residues in the A and C helices, and site 3, in the terminal part of the CD loop). The binding affinity to IL-6R alpha of these variants is normal but their biological activity is poor or absent. We demonstrate here that both the site 2 and site 3 IL-6 variants complexed with IL-6R alpha bind a single gp130 molecule but are unable to dimerize it, whereas the combined site 2/3 variants lose the ability to interact with gp130. The binding properties of these variants in vitro, and the result of using a neutralizing monoclonal antibody directed against site 3, lead to the conclusion that gp130 dimer is formed through direct binding at two independent and differently oriented sites on IL-6. Immunoprecipitation experiments further reveal that the fully assembled receptor complex is composed of two IL-6, two IL-6R alpha and two gp130 molecules. We propose here a model representing the IL-6 receptor complex as hexameric, which might be common to other helical cytokines.  相似文献   

17.
gp130 acts as a common transducing signal chain for all receptors belonging to the interleukin (IL)-6 receptor family. The IL-6-related cytokines [IL-6, IL-11, oncostatin M (OSM), leukemia inhibitory factor, ciliary neurotrophic factor, and cardiotrophin] often modulate tumor phenotype and control the proliferation of many tumor cell lines. We demonstrate that melanoma cell lines release, in vitro and in vivo (when transplanted in nude mice), soluble gp130 (sgp130), a potential antagonist of cytokines from the IL-6 family. Biochemical analysis revealed that sgp130 derived from melanoma patients' sera or from culture supernatants of melanoma cell lines is a Mr 104,000 protein that resolved after deglycosylation as a Mr 58,000 protein. PCR and Northern blot analysis only identified one gp130 membrane mRNA, suggesting that the soluble form of gp130 is generated by proteolytic cleavage. OSM reproducibly increases sgp130 released by melanoma cell lines, whereas leukemia inhibitory factor stimulates the production of sgp130 in only one of three cell lines tested. This tumor-derived sgp130 is functional because it binds in solution to the IL-6-soluble IL-6 receptor (gp80) complex. Recombinant sgp130 inhibits the growth inhibitory activity of the IL-6-soluble IL-6 receptor complex and OSM on some melanoma cell lines. Therefore, this soluble gp130 represents a natural antagonist of cytokines from the IL-6 family.  相似文献   

18.
Plasma levels of interleukin (IL)-6, soluble IL-6 receptor, soluble gp130, leukemia inhibitory factor (LIF), and ciliary neutrophic factor (CNTF) were analyzed in 32 patients with severe malaria. Ten had renal failure, 8 had cerebral malaria, and 14 had other causes of severity. Before treatment, the IL-6 and soluble IL-6 receptor plasma levels were significantly higher in persons with cerebral malaria or renal failure than in other groups (P<.01 for both). After initiation of therapy, IL-6 levels dropped within 24 h, but soluble IL-6 receptor levels increased. CNTF levels were significantly reduced in persons with cerebral malaria or renal failure but normalized within 24 h. Plasma concentrations of gp130 and LIF did not differ between the malaria groups or normal controls. Excessive levels of IL-6 could be controlled by a subsequent shedding of the soluble IL-6 receptor, and low-level CNTF expression could contribute to or even result from cerebral malaria or renal failure.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号