首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminum borocarbide single crystals have been grown from an Al-based solution melt. The crystal lattice parameters have been determined, the dispersion of the refractive index in a 0.55–1.3 μm wavelength interval has been studied, and the temperature coefficient of the refractive index in a 300–600 K range has been measured. The crystals are characterized by a high refractive index in the visible spectral range in combination with at a high hardness, which makes them of interest for jewelry, as well as for both traditional and X-ray optics.  相似文献   

2.
Rafts of aligned, high aspect ratio TiO2 nanotubes were fabricated by an electrochemical anodization method and their axial electrical conductivities were determined over the temperature range 225–400 °C. Length, outer diameter, and wall thickness of the nanotubes were approximately 60–80 μm, 160 nm, and 30 nm, respectively. Transmission electron microscopy studies confirmed that the TiO2 nanotubes were initially amorphous, and became polycrystalline anatase after heat treatment at temperatures as low as 250 °C in air. The activation energy for conductivity over the temperature range 250–350 °C was found to be 0.87 eV. The conductivity values are comparable to those of nanocrystalline and nanoporous anatase thin films reported in literature.  相似文献   

3.
We describe the preparation and optical properties of the 15-layer chalcogenide dielectric mirrors with the first order stop bands in near infrared range. The high refractive index Sb–Se and low refractive index Ge–S layers were deposited on silicon and glass substrates using thermal evaporation method. To centre the stop bands of the prepared chalcogenide mirrors at 1.55 μm, the layer thicknesses, d(Sb–Se) = 117 and d(Ge–S) = 183 nm, were calculated from the quarter wave stack condition. The optical reflectivity measurements revealed the total reflection from the 15-layer chalcogenide mirrors in the range of 1,400–1,600 nm for the unpolarized light with normal incidence. The effect of annealing on the optical properties of the prepared chalcogenide mirrors was studied as well. Using spectral ellipsometry, we examined the angular dependence of the multilayers reflectivity for the light with s- and p-polarization. The preparation of the dielectric mirrors for near infrared region from chalcogenide films seems to be possible exploiting good optical quality of chalcogenide films and their simple deposition.  相似文献   

4.
Calcium modified lead titanate films have been prepared on Pt/Ti/SiO2/Si substrates using a sol–gel route. The sols were prepared from propanediol solutions of Pb(CH3COO)2·xH2O, Ti(OC3H7)2(CH3COCHCOCH3)2 and Ca(NO3)2·xH2O. Tetragonal phase (Pb, Ca)TiO3 films could be produced by firing the coatings at 650°C for 30 min. The limiting thickness of crack-free single layers was ∼0.4 μm, but 3 μm thick films could be made by a multiple deposition technique. Dielectric and ferroelectric parameters were determined for single layer 0.5 μm films for compositions up to 30 mol% Ca. The average values of remanent polarization, Pr and coercive field, Ec decreased with increasing Ca content from ∼11 μC cm−2 and ∼125 Kv cm−1 for a 10 mol% Ca composition to ∼8 μC cm−2 and 80 kV cm−1 for 30 mol% Ca films. It was noted that the statistical variation in electrical values across each film was greater than in PZT films made by a similar sol–gel route. Reasons for this are discussed in terms of the incidence of physical defects in the films. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

5.
This paper reports on the comparative investigation of structural and optical properties of nano thin films of ZnO and Sr-doped ZnO (SZO) onto glass substrates synthesized by a two-step chemical bath deposition (CBD) technique. The mode of crystallization, structural properties, and morphologies have been investigated. The films are polycrystalline in nature with hexagonal phase having (002) preferential orientation. The typical crystallite size is also estimated and found to be around 30–80 nm. The shifts in optical band gap of the SZO films are estimated to be ∼3.25–3.27 eV with respect to the ZnO film and the refractive index is 2.35. The room temperature resistivity is of the order of ∼2,000 Ωcm. Thermoemf measurements show that films are of n-type. The sensitivity of the films was studied as a function of their temperature 275–575 K for a fixed ethanol concentration (400 ppm). The films have been tested for cross sensitivity for different gases and it has been confirmed that these are highly sensitive and selective for ethanol vapors around 200 °C in air atmosphere.  相似文献   

6.
Analysis of changes in surface roughness of CdS thin films with preparation temperature was carried out using variable angle spectroscopic ellipsometry (VASE). The films studied were prepared by spray pyrolysis technique, in the substrate temperature range 200–360°C. The VASE measurements were carried out in the visible region below the band gap (E g=2·4eV) of CdS so as to reduce absorption by the film. The thickness of the films was in the range 500–600 nm. Bruggeman’s effective medium theory was used for analysis of the surface roughness of the film. The roughness of the film had a high value (∼ 65 nm) for films prepared at low temperature (200°C) and decreased with increase in substrate temperature. This reached minimum value (∼ 27 nm) in the temperature range 280–300°C. Thereafter roughness increased slowly with temperature. The growth rate of the films was calculated for different temperature ranges. It was found that the deposition rate decreases with the increase in substrate temperature and have an optimum value at 300°C. Above this temperature deposition rate decreased sharply. The scanning electron micrograph (SEM) of the film also showed that the film prepared at 280–300°C had very smooth surface texture.  相似文献   

7.
CaCu3Ti4O12 (CCTO) thin film was successfully deposited on boron doped silica substrate by chemical solution deposition and rapid thermal processing. The phase and microstructure of the deposited films were studied as a function of sintering temperature, employing X-ray diffractometry and scanning electron microscopy. Dielectric properties of the films were measured at room temperature using impedance spectroscopy. Polycrystalline pure phase CCTO thin films with (220) preferential orientation was obtained at a sintering temperature of 750°C. There was a bimodal size distribution of grains. The dielectric constant and loss factor at 1 kHz obtained for a film sintered at 750°C was k ∼ 2000 and tan δ ∼ 0.05.  相似文献   

8.

This paper elaborates on the thickness-dependent structural, optical, and electrical properties of Erbium(III)-Tris-8-hydroxyquinolinato (ErQ3) films. The surface morphology reveals the grains that consolidate to make denser films with increasing film thickness. The ErQ3 grain sizes increased from 80 to 187 nm as the thickness increased from 80 to 190 nm. From XRD analysis, the ErQ3 films are partially crystallized with only one peak at 2θ?=?9.80° and a plateau in the range of 20–40°. Electrical measurement of ErQ3 films showed that the electrical conductivity had a strong dependence on film thickness. Transmittance and reflectance measurements showed that the films exhibited a 2.60 eV bandgap, and it does not depend on the thickness of the film. Also, the dispersion of the refractive index was analyzed to determine the essential parameters. The nonlinear optical parameters such as nonlinear refractive index and third-order nonlinear optical susceptibility were calculated by Miller's principles.

  相似文献   

9.
Transparent cubic-, tetragonal-zirconia thin films were successfully deposited on glass and quartz substrates by using the metalorganic chemical deposition technique. The thin films were achieved by adjusting deposition parameters such as substrate temperature, oxygen partial pressure, and zirconium acetylacetonate (Zr(acac)4) used as precursor. Structural and morphological characterizations of the as-deposited thin films were studied by XRD, Raman spectroscopy, SEM, and AFM techniques, while some optical properties such as transmittance and refractive index were determined by means of the UV–vis technique. The ZrO2 films, grown at 700 °C and different P\textO 2 :P\textZr(acac)4 P_{{{\text{O}}_{ 2} }}{:}P_{{\text{Zr(acac)}_{4} }} ratios, displayed very variable particle sizes ranging from ~0.2 to 1.0 μm, and crystallite sizes within 10–30 nm forming a uniform film. Low mean roughness was obtained in the samples, which varied from 0.674 to 1.33 nm. These films grew with a columnar structure and apparently with low carbon content (<0.2%). All the synthesized thin films showed an adequate optical transmission, but the most transparent (>80%) was obtained with a P\textO 2 :P\textZr(acac)4 P_{{{\text{O}}_{ 2} }} {:}P_{{\text{Zr(acac)}_{4} }} ratio of (Pa) 107:0.2. The oxygen partial pressure influences the crystallinity of the as-deposited films, while the refractive index remains constant.  相似文献   

10.
Cerium oxide (CeO2) thin films have been prepared by electron beam evaporation technique onto glass substrate at a pressure of about 6 × 10−6 Torr. The thickness of CeO2 films ranges from 140–180 nm. The optical properties of cerium oxide films are studied in the wavelength range of 200–850 nm. The film is highly transparent in the visible region. It is also observed that the film has low reflectance in the ultra-violet region. The optical band gap of the film is determined and is found to decrease with the increase of film thickness. The values of absorption coefficient, extinction coefficient, refractive index, dielectric constant, phase angle and loss angle have been calculated from the optical measurements. The X-ray diffraction of the film showed that the film is crystalline in nature. The crystallite size of CeO2 films have been evaluated and found to be small. The experimental d-values of the film agreed closely with the standard values.  相似文献   

11.
The optical and structural properties of r.f. sputtered CeO2 thin films deposited on Pyrex substrates have been studied as a function of substrate temperature during deposition. The refractive index, n, extinction coefficient, k, and bandgap of the films were calculated from reflectance, R, and transmittance, T, spectra in the wavelength range 340–900 nm. The refractive index of CeO2 films at 550 nm comprises values from about 2.25–2.4 depending on the substrate temperature during deposition. The extinction coefficient was negligible for wavelength values higher than 400 nm. The value obtained for the bandgap was 3.1 eV. The X-ray diffraction patterns showed the same (f c c) cubic structure with preferential orientation depending on substrate temperature during deposition. The scanning force microscope measurements showed that the roughness and grain size of the CeO2 films increase with increasing substrate temperature. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
Crack propagation through layered Al2O3/ZrO2 composites was studied. The specimens were prepared via electrophoretic deposition of alumina and zirconia powders from suspensions with monochloroacetic acid and isopropanol. The kinetics of electrophoretic deposition could be described fully if the electrophoretic mobility and conductivity of suspensions were known. The conductivity of suspensions increased in the course of deposition. Adjusting to properly controlled kinetics of deposition and sintering, deposits were prepared with strongly bonded layers of different pre-defined thicknesses and, consequently, with different magnitudes of residual stress. Cracks, produced by an indentation technique, propagated askew towards layer interfaces deflected towards the interface in the Al2O3 layers and away from the interface in the ZrO2 layers. Changes in the direction of crack propagation were described for the whole range of angles of incidence (0°–90°). The biggest change in the crack propagation was observed for the angle of incidence 45° and was ca. 15°, irrespective of the magnitude of residual stress in the layers.  相似文献   

13.
Oxides of the type, Ba3-xSrxZnNb2O9 (0 ≤x ≤3), were synthesized by the solid state route. Oxides calcined at 1000°C show single cubic phase for all the compositions. The cubic lattice parameter (a) decreases with increase in Sr concentration from 4.0938(2) forx = 0 to 4.0067(2) forx = 3. Scanning electron micrographs show maximum grain size for thex = 1 composition (∼ 2 μm) at 1200°C. Disks sintered at 1200°C show dielectric constant variation between 28 and 40 (at 500 kHz) for different values of x with the maximum dielectric constant atx = 1.  相似文献   

14.
The transparent ZnO thin films were prepared on Si(100) substrates by the sol-gel method. The structural and optical properties of ZnO thin films, submitted to an annealing treatment in the 400–700°C ranges are studied by X-ray diffraction (XRD) and UV-visible spectroscopic ellipsometry (SE). XRD measurements show that all the films are crystallized in the hexagonal wurtzite phase and present a random orientation. Three prominent peaks, corresponding to the (100) phase (2θ ≈ 31.8°), (002) phase (2θ ≈ 34.5°), and (110) phase (2θ ≈ 36.3°) appear on the diffractograms. The crystallite size increases with increasing annealing temperature. These modifications influence the optical properties. The optical constants and thickness of the films have been determined by analysing the SE spectra. The optical bandgap has been determined from the extinction coefficient. We found that the refractive index and the extinction coefficient increase with increasing annealing temperature. The optical bandgap energy decreases with increasing annealing temperature. These mean that the optical quality of ZnO films is improved by annealing.  相似文献   

15.
0.5 wt% Pd-doped titanium oxide thin films were obtained by dip-coating on silicon substrates. The films were compacted by annealing in air at 300 and 500 °C. Temperature dependent electrical conductivity measurements were performed in the temperature range 373–623 K, in different environments (air, methane, acetone, ethanol, formaldehyde and liquefied petroleum gas), to test the films sensing gas properties. Formaldehyde was found to be the test gas that produces the most significant changes in the electrical conductivity of the studied films. This was the reason why it was chosen to investigate its effect on their electrical conductivity. A model was proposed, the model of the potential fluctuations at grain boundaries. A comparison between some parameters obtained in the proposed model was performed as a function of annealing temperature, and as a function of gas atmosphere. The values of the mean barrier height and the standard deviation were estimated to range between 0.336–0.588 eV and 0.175–0.199 eV, respectively. It was found that formaldehyde leads to a rather sharp decrease in the values of the barrier height and the standard deviation, and to an increase in the conductivity. We have observed the best sensing gas performance for the films annealed at 300 °C, comparing to their counterparts annealed at 500 °C, explained by the lowest values of the barrier energy height and the standard deviation.  相似文献   

16.
Yttrium oxide thin films are deposited on silicon substrates using the ultrasonic spray pyrolysis technique from the thermal decomposition of a β-diketonate, yttrium acetylacetonate (Y(acac)3). The decomposition of Y(acac)3 was studied by thermogravimetry, differential scanning calorimetry, mass spectrometry, and infrared spectroscopy. It was found that a β-diketone ligand is lost during the initial steps of decomposition of the Y(acac)3. The rest of the complex is then dissociated or degraded partially until Y2O3 is obtained in the final step with the presence of carbon related residues. Then the Y(acac)3 was used to synthesize Y2O3 thin films using the spray pyrolysis technique. The films were deposited on silicon substrates at temperatures in the range of 400–550 °C. The films were characterized by ellipsometry, infrared spectroscopy, atomic force microscopy, and X-ray diffraction. The films presented a low surface roughness with an index of refraction close to 1.8. The crystalline structure of the films depended on the substrate temperature; films deposited at 400 °C were mainly amorphous, but higher deposition temperatures (450–550 °C), resulted in polycrystalline with a cubic crystalline phase.  相似文献   

17.
Cerium dioxide (CeO2) thin films were deposited on glass substrates by spray pyrolysis using a solution of alcohol–water and CeCl3 · 7H2O as precursor. The structural, morphological, optical and electrical properties of these films were investigated. SEM images reveal the presence of cracks in the films that depend on substrate temperature and deposition time. Films deposited in temperatures between 400 and 500 °C during up to 10 min are crack free and also present high optical transmittance, reaching up to 90% in the visible range and close to infrared. X-ray diffraction shows that all films are polycrystalline and the growth preferential direction is altered from (111) to (200) with the increase of the deposition temperature. The activation energy of the electrical conduction process is 0.67 ± 0.03 eV.  相似文献   

18.
We have studied in detail the gamma radiation induced changes in the electrical properties of the (TeO2)0·9 (In2O3)0·1 thin films of different thicknesses, prepared by thermal evaporation in vacuum. The current–voltage characteristics for the as-deposited and exposed thin films were analysed to obtain current versus dose plots at different applied voltages. These plots clearly show that the current increases quite linearly with the radiation dose over a wide range and that the range of doses is higher for the thicker films. Beyond certain dose (a quantity dependent on the film thickness), however, the current has been observed to decrease. In order to understand the dose dependence of the current, we analysed the optical absorption spectra for the as-deposited and exposed thin films to obtain the dose dependences of the optical bandgap and energy width of band tails of the localized states. The increase of the current with the gamma radiation dose may be attributed partly to the healing effect and partly to the lowering of the optical bandgap. Attempts are on to understand the decrease in the current at higher doses. Employing dose dependence of the current, some real-time gamma radiation dosimeters have been prepared, which have been found to possess sensitivity in the range 5–55 μGy/μA/cm2. These values are far superior to any presently available real-time gamma radiation dosimeter.  相似文献   

19.
Electrical conductivity, IV characteristics and optical properties are investigated for InSbSe3 amorphous thin films of different thicknesses prepared by thermal evaporation at room temperature. The composition of both the synthesized material and thin films were checked by energy dispersive X-ray spectroscopy (EDX). X-ray analysis indicated that all samples under investigation have amorphous structure. The dc electrical conductivity was measured in the temperature range (303–393 K) and thickness range (149–691 nm). The activation energy ΔE σ was found to be independent of film thickness in the investigated range. The obtained IV characteristic curves for the investigated samples are typical for memory switches. The switching voltage increases linearly with film thickness in the range (113–750 nm), while it decreases exponentially with temperature in the range (303–393 K). The switching process can be explained according to an electrothermal process initiated by Joule-heating of the current channel. Measurements of transmittance and reflectance in the spectral range (400–2,500 nm) are used to calculate optical constants (refractive index n and absorption index k). Both n and k are practically independent of film thickness in the investigated range (149–691 nm). By analysis of the refractive index n the high frequency dielectric constant ε was determined via two procedures and was found to have the values of 9.3 and 9.15. Beyond the absorption edge, the absorption is due to allowed indirect transitions with energy gap of 1.46 eV independent on film thickness in the investigated range.  相似文献   

20.
n-Type AgInSe2 films 0.5 to 0.9 μm thick were grown by dc magnetron sputtering. As targets, we used AgInSe2 crystals grown by a modified Bridgman process using high-purity precursors. The crystal structure, morphology, electrical conductivity, and Hall coefficient of the films were studied at various temperatures. We determined the optimal growth and annealing temperatures of the films (500 and 250°C, respectively). Using structures based on the films, we obtained the spectral dependences of their photoresponse, established the nature of interband transitions in the films, and evaluated their band gap. The ability to vary electrical and optical properties with no changes in stoichiometry is of interest for concentrated solar power applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号