首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
陶瓷相(Ti,W)C的价电子结构与力学性能的关系   总被引:9,自引:1,他引:8  
刘宁  胡镇华 《硅酸盐学报》1997,25(4):420-426
计算了陶瓷相(Ti,W)C的价电子结构,比较了陶瓷相(Ti,W)C,TiC,TiN,TiO之间的价电子结构与力学性能之间的关系,指出陶瓷相价电子结构中的最强键nA的大小在晶体结构相同时可作为硬度高低的比较标准,陶瓷相的强度可由η=nc/nT来衡量。  相似文献   

2.
对热等静压方法制备的(Nb,Ti)C-35Ni金属陶瓷的高温抗弯强度进行了研究。采用XRD,SEM及TEM等方法对该金属陶瓷的显微结构作了分析。结果表明,在氧化气氛中,温度为700℃时该金属陶瓷的抗弯强度就明显下降,温度为1000℃时其抗弯强度约只有室温时的20%。  相似文献   

3.
Ti(C,N)基金属陶瓷显微组织的研究   总被引:11,自引:3,他引:11  
用粉末冶金方法制备了Ti(C,N)基金属陶瓷,其硬度、抗弯强度和断裂韧性分别可达HRn91.2,1250MPa和13.4MPa·m^1/2同样TEM研究表明,陶瓷相/金属相、陶瓷相/陶瓷相界面分别存在一定的取向关系,揭示了液相在烧结后的凝固过程。  相似文献   

4.
对热等静压方法制备的(Nb,Ti)C-35Ni金属陶瓷的高温抗弯强度进行了研究。采用XRD,SEM及TEM等方法对该金属陶瓷的显微结构的作了分析,结果表明,在氧化气氛中,温度为700℃时该金属瓷的抗弯强度就明显下降,温度为1000℃时其抗弯强度约只有室温时的20%。  相似文献   

5.
利用SEM,EPMA,TEM/EDAX等测手段对(Nb,Ti)C-Ni金属陶瓷中的包裹结构形成机理作了研究。结果表明:它是由于该金属陶瓷在烧结时,细小的(Nb,Ti)C颗粒溶解在熔融态的Ni中,当Ti,Nb及C的浓度达到大颗粒的饱和浓度时,在大颗粒表面沉淀,继面Ni同其扩散而形成的,用离散变分-Xa方法计算表明:包裹层的金属键程度要比包裹结构中心的高。  相似文献   

6.
利用SEM,EPMA,TEM/EDAX等测试手段对(Nb,Ti)C-Ni金属陶瓷中的包裹结构形成机理作了研究。结果表明:它是由于该金属陶瓷在烧结时,细小的(N5,Ti)C粒溶解在熔融态的Ni中,当Ti,Nb及C的浓度达到大颗粒的饱和浓度时,在大颗粒表面沉淀,继而Ni向其扩散而形成的。用离散变分──X_α方法计算表明:包裹层的金属键程度要比包裹结构中心的高。  相似文献   

7.
  ВГ 李培德 《电碳》1998,(1):35-39
本文研究形成于金刚石颗粒表面的Cr、Ti、Mo、V、W涂层的相组成及其厚度。所用涂覆物为在真空中退火处理过的铬粉或Ti、Mo、V和W氧化粉末混合物。涂层由金属和碳化物相组成。涂层厚度增长过程中,随着涂覆度的上升、时间的延续,碳的扩散作用为铬、钛和钒的碳化提供了条件(它引起涂覆物中金属相成分减少,而碳化物相相应增加),高价碳化物(Cr3C2、VC、WC)依赖于低价碳化物(Cr7C3、V2C、W2C)  相似文献   

8.
Ti(C,N)基金属陶瓷中陶瓷相芯/壳组织的观察与分析   总被引:6,自引:2,他引:4  
用XRD,SEM,TEM和HREM观察、分析和方法研究了Ti(C,N)基金属陶瓷中陶瓷相的芯、壳组织。结果表明,在SEM,TFM观察中,芯、壳之间存在相界面,而HREM观察显示陶瓷相的芯/壳组织具有连续相同的点阵结构。  相似文献   

9.
MoSi2和WSi2相结构和性能的电子理论研究   总被引:6,自引:0,他引:6  
周飞 《硅酸盐学报》2000,28(5):462-464
根据固体与分子经验电子理论,对MoSi2和WSi2相进行价电子结构分析,通过键距差方法,计算了MoSi2和WSi2晶体中各键上的共价电子数。结果表明:MoSi2和WSi2相是靠键距为  相似文献   

10.
研究了Ph(Zn1/3Nb2/3)x(Fe1/2Nb1/2)0.64-x(Fe2/3W1/3)0.36O3(PZN-PFN-PFW)系陶瓷中PZN含量与焦录石相形成间的关系,以及少量添加剂对钙钛矿相的稳定和介电性能的影响。在该系中仅添加0.15wt%MnCO3就可制备100%钙钛矿型结构的陶瓷。文中报导了该系组成的相关系和介电性质。钙钛矿结构的陶瓷介电常数高,电容温度系数较低。  相似文献   

11.
运用固体与分子经验电子理论(EET理论)计算了(Ti,Mo,W,Ta,V,Nb)(C,N)多元陶瓷相的价电子结构.结果表明,价电子结构参数(nA)随碳化物添加量的增加而增加.不同碳化物对价电子结构参数的影响不同,其中VC的影响最为显著.价电子结构参数(nA)可以用来评价金属陶瓷的力学性能,提出了相关的判据关系式.  相似文献   

12.
陈文琳  刘宁  晁晟 《硅酸盐学报》2007,35(6):725-730
用粉末冶金真空烧结法制备了超细晶粒碳氮化钛[Ti(C,N)]基金属陶瓷.研究了原始粉末粒径对Ti(C,N)基金属陶瓷微观结构和力学性能的影响.结果表明:在化学成分相同的条件下,晶粒细化使材料的Vickers硬度和抗弯强度上升,但断裂韧性有所下降.在超细晶粒Ti(C,N)基金属陶瓷微观组织中出现了一种新型的白芯/灰壳结构和一种特殊化合物(Ni2Mo2.5W1.3)Cx.初步研究表明:由于原始粉末粒径微小,促进了扩散反应因而生成了这种芯/壳结构.芯/壳结构有利于提高材料的抗弯强度和断裂韧性.(Ni2Mo2.5W1.3)Cx有利于提高材料的Vickers硬度,但是降低了Ti(C,N)基金属陶瓷的抗弯强度和断裂韧性.  相似文献   

13.
Effect of Mo addition on the microstructure and mechanical properties of TiC–TiN(nm)–WC–Co–Ni–C system cermets was studied in the work. Specimens were fabricated by conventional powder metallurgy techniques. The microstructure was investigated using transmission electron microscope (TEM) and the scanning electron microscope (SEM). Chemical compositions of different phases such as ceramic phase with core/rim structure [the core being TiC and rim being (Ti,W,Mo)(C,N)] and metallic phase were analyzed quantitatively by EDX. Mechanical properties such as flexural strength, fracture toughness and hardness were also measured. Results show that flexural strength and fracture toughness have a trend to decline with increasing Mo addition, but the change of hardness is not apparent with the increase of Mo addition. Results also reveal that finer microstructure and thicker rim phase will be obtained with the increase of Mo addition. The optimal addition of Mo can be estimated to be 4 wt.% with respect to TiC–10TiN(nm)–15WC–5Co–Mo–5Ni–1C system cermets. Fracture micrographs show that main failure mode of the cermets is a mixed one, i.e., trans-granular and inter-granular fractures both exist.  相似文献   

14.
《Ceramics International》2015,41(8):9259-9264
Ni–Mo–C/Ti(C,N) coated powders, namely Ni–Mo alloy and Mo2C coated Ti(C,N) composite powders, were synthesized by using a heterogeneous precipitation and thermal reduction method, then pressed and vacuum sintered to fabricate cermets. The chemical composition, microstructure and phases of the composite powders and the microstructure and properties of sintered cermets were experimentally investigated. The results show that a fine and uniform microstructure of (Ti,Mo)(C,N)-Ni cermets without the conventional core-rim structure is obtained. The phases formed during the preparation of the coated powders as well as the cermets were analyzed by means of a X-ray diffraction (XRD) technique. The XRD result confirms the formation of the Ni3Ti phase in the cermets. Due to the formation of the non-magnetic Ni3Ti and the dissolution of Mo in Ni binder phase, the magnetic properties are strongly retarded. The fracture of the cermets is mainly characterized by inter-granular and dimple fractures. Better mechanical properties can be obtained in comparison with conventionally fabricated ones.  相似文献   

15.
With the assistance of thermodynamic simulation, the NbC–Ni based cermets with different W and C additions were designed and sintered in liquid state at 1390°C for 90 min in vacuum. By controlling the carbon and tungsten content, (Nb,W)C–Ni based cermets were prepared with varied phase constitution, microstructure, and mechanical properties. The microstructure, composition of phases, grain size, and equilibrium phases were investigated using scanning electron microscopy, electron probe microanalysis, EBSD, and X-ray diffraction. The simulation reasonably predicted the experimentally observed phase constitutions. Depending on the additions, detailed analysis indicated that the cermets were composed of either a combination of cubic (Nb,W)C solid solution and Ni alloy binder or with an additional carbon-deficient phase. Furthermore, mechanical analysis showed a strong dependence of its mechanical properties (Vickers hardness, indentation toughness, and flexural strength) on the phases and NbC grain size.  相似文献   

16.
《Ceramics International》2017,43(3):2918-2926
Homogeneous solid-solution (Ti, Ta, Nb,W)(C,N) powders were synthesized through carbothermal reduction-nitridation method. The effects of (Ti, Ta, Nb,W)(C,N) powders on the microstructure, mechanical properties and corrosion resistance of WC-10Co cemented carbides were investigated using XRD, SEM, electrochemical test and mechanical properties tests. The results showed that cemented carbides with pre-alloyed powder addition had a similar microstructure appearance: weak core/rim structure consisting of solid-solution phase embedded in the WC-Co system. The black core and gray rim, both of which contained similar elements, were identified as (Ti, Ta, Nb,W)(C,N), but the latter contained higher amount of heavy elements.With the addition of (Ti, Ta, Nb,W)(C,N) powders, the density, transverse rupture strength and fracture toughness of samples decreased monotonously. However, the hardness rose sharply at first, reached a peak at 15 wt% solid-solution addition, then slightly decreased, and finally increased again. Results also revealed that increasing (Ti, Ta, Nb,W)(C,N) made the open circuit potential (OCP) in 1 M sulphuric acid solution more negative than that of WC-Co, and all specimens exhibited pseudo-passivation phenomenon in the test solution. In addition, increasing pre-alloyed powders led to decreasing corrosion current density, which implies that (Ti, Ta, Nb,W)(C,N) could remarkably improve the corrosion resistance of WC-Co cemented carbides.  相似文献   

17.
In this study, Ti(C,N)-WC-NbC-ZrC-Co-Ni cermets were prepared by sintering-hip at 1450?°C. The effect of ZrC addition on the microstructure, mechanical properties, oxidation resistance and wear resistance of Ti(C,N)-WC-NbC-Co-Ni cermets were explored in detail. The results show that ZrC addition plays the role of inhibitor in the dissolution–reprecipitation process, which can increase the wear-resistant carbide phases and inhibit the precipitation of brittle (Ti,W,Nb)(C,N) rim phase. Therefore, the core-rim structures are refined and the Nb content in binder increases, which enhance mechanical properties and oxidation resistance of cermets. With the increasing ZrC content, the oxidation resistance of cermets can be improved constantly, while the transverse rupture strength, fracture toughness and wear resistance of these cermets increase first and then decrease. The cermet with 1?wt% ZrC exhibits the transverse rupture strength of 2549?MPa and highest fracture toughness of 13.0?MPa?m1/2. The oxidation weight gain of cermets containing 5?wt% ZrC after holding 100?h at 750?°C in air is 2.8?×?10?6 g?mm?2, which is only 22% of that in the cermets without ZrC addition.  相似文献   

18.
We have employed thermodynamics and first-principles density-functional calculations to investigate the structural stability and mechanical properties of fifty-six quinary high-entropy metal carbides composed of carbon and Groups IVB, VB, and VIB refractory transition metals, Ti, Zr, Hf, V, Nb, Ta, Mo, and W, thirty-eight of which have not yet been synthesized. To determine the stability of the quinary high-entropy metal carbides, we have constructed a three-dimensional phase diagram in terms of the average melting point, mixing enthalpy, mixing entropy, and lattice size difference, from which we predict that it is feasible to synthesize 38 new high-entropy metal carbides. We have further found that all the 56 metal carbides would have unique mechanical properties of high hardness and high fracture toughness. In addition, our study suggests that the brittleness of high-entropy metal carbides steadily decreases with the increase of the valence electron concentration.  相似文献   

19.
Novel high-entropy carbide ceramics (HEC) containing rare earth metals, namely (Ti, Zr, Hf, Ta, La, Y)C, (Ti, Zr, Hf, Ta, Nb, La, Y)C, and (Ti, Zr, Hf, Ta, Nb, Mo, W, La)C were prepared with single-phase structure by polymer precursor method. Controlled co-hydrolysis and polycondensation of equiatomic metal-containing monomers were conducted successively, followed by blending allyl-functional novolac resin as carbon source, and the polymer precursors were obtained as clear viscous liquid solutions. The single-phase formation possibility was theoretically analyzed from the aspects of size-effect parameter δ of the designed compositions. All as-obtained ceramics possessed single face-centered-cubic structure of metal carbides and high-compositional uniformity from nanoscale to microscale. The (Ti, Zr, Hf, Ta, Nb, Mo, W, La)C ceramic powder pyrolyzed at 1800°C exhibited low-oxygen impurity content of 1.2 wt%. Thus, multicomponent high-entropy carbide nanoceramics with over five metal elements containing even rare earth element were firstly synthesized and characterized.  相似文献   

20.
Complete solid-solution Ti(C,N)-based cermet, with no typical core-rim structure, was synthesized through mechanical activation and subsequent in situ carbothermal reduction method. XRD, SEM, TEM, and C/N analysis were used to investigate the microstructure, phase transformation, and the interfacial characteristics of the present cermets. During solid-state sintering, the (Ti,Mo)C/(Ti,Mo)(C,N) phases formed through the transformation of Mo-based solid solution which generated by mechanical activation. Then, the formed (Ti,Mo)C/(Ti,Mo)(C,N) continuously dissolved into the nickel-based binder above 1100 °C. It was found that in the subsequent stage of liquid sintering, the mechanical activation and also the presence of extremely fine TiC/Ti(C,N) particles accelerated the Mo diffusion into the hard phase, resulting in a large quantity of (Ti,Mo)(C,N) solid solutions formed in the nickel-based binder. Finally, complete (Ti,Mo)(C,N) solid-solution phase was obtained via dissolution and re-precipitation. The higher toughness and transverse rupture strength (TRS) of the synthesized new cermet, as compared with traditional cermets, were mainly caused by the increased crack deflection and transgranular fracture of the novel cermets. Moreover, the interface among the Ni-based binder phase and complete solid solution hard phase exhibited a semi-coherency state with high-density dislocations, which also significantly improved the TRS and toughness of the synthesized cermets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号