首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carvacrol and eugenol were encapsulated in micellar nonionic surfactant solutions to increase active component concentrations in the aqueous phase and used to treat two strains of Listeria monocytogenes (Scott A and 101) and two strains of Escherichia coli O157:H7 (4388 and 43895) grown as biofilms in a Centers for Disease Control and Prevention reactor. L. monocytogenes biofilms were grown in two different growth media, 1:20 TSB and Modified Welshimer's broth (MWB), while E. coli O157:H7 was grown in M9. In general, L. monocytogenes strains were more resistant to both micelle-encapsulated antimicrobials than E. coli O157:H7 strains. The two antimicrobials were equally effective against both strains of E. coli O157:H7, decreasing viable counts by 3.5 to 4.8 log CFU/cm(2) within 20 min. For both bacteria, most of the bactericidal activity took place in the first 10 min of antimicrobial exposure. Biofilm morphology and viability were assessed by the BacLight RedoxSensor CTC Vitality kit and confocal scanning laser microscopy, revealing an increasing number of dead cells when biofilms were treated with sufficiently high concentrations of carvacrol- or eugenol-loaded micelles. This study demonstrates the effectiveness of the application of surfactant-encapsulated essential oil components on two pathogen biofilm formers such as E. coli O157:H7 and L. monocytogenes grown on stainless steel coupons.  相似文献   

2.
3.
《Food microbiology》2004,21(5):611-616
Listeria monocytogenes and Escherichia coli O157:H7 are major foodborne pathogens implicated in various outbreaks involving pasteurized or unpasteurized milk, and various dairy products. The objective of this study was to determine the antibacterial effect of caprylic acid (CA, C8:0) and its monoglyceride, monocaprylin (MC) on L. monocytogenes and E. coli O157:H7 in whole milk. A five-strain mixture of E. coli O157:H7 or L. monocytogenes was inoculated in autoclaved milk (106 CFU/ml) containing 0, 25, or 50 mM of CA or MC. At 37°C, all the treatments, excepting 25 mm CA, reduced the population of both pathogens by approximately 5.0 log CFU/ml in 6 h. At 24 h of storage at 8°C, MC at both levels and CA at 50 mM decreased L. monocytogenes and E. coli O157:H7, respectively by >5.0 log CFU/ml. At 48 h of 4°C storage, populations of L. monocytogenes and E. coli O157:H7 were decreased to below detection level (enrichment negative) by 50 mm of MC and CA, respectively. Results indicate that MC could potentially be used to inhibit L. monocytogenes and E. coli O157:H7 in milk and dairy products, but sensory studies need to be conducted before recommending their use.  相似文献   

4.
One milliliter of culture containing a five-strain mixture of Escherichia coli O157:H7 (approximately 10(10) CFU) was inoculated on a 100-cm2 area marked on unscarred cutting boards. Following inoculation, the boards were air-dried under a laminar flow hood for 1 h, immersed in 2 liters of electrolyzed oxidizing water or sterile deionized water at 23 degrees C or 35 degrees C for 10 or 20 min; 45 degrees C for 5 or 10 min; or 55 degrees C for 5 min. After each temperature-time combination, the surviving population of the pathogen on cutting boards and in soaking water was determined. Soaking of inoculated cutting boards in electrolyzed oxidizing water reduced E. coli O157:H7 populations by > or = 5.0 log CFU/100 cm2 on cutting boards. However, immersion of cutting boards in deionized water decreased the pathogen count only by 1.0 to 1.5 log CFU/100 cm2. Treatment of cutting boards inoculated with Listeria monocytogenes in electrolyzed oxidizing water at selected temperature-time combinations (23 degrees C for 20 min, 35 degrees C for 10 min, and 45 degrees C for 10 min) substantially reduced the populations of L. monocytogenes in comparison to the counts recovered from the boards immersed in deionized water. E. coli O157:H7 and L. monocytogenes were not detected in electrolyzed oxidizing water after soaking treatment, whereas the pathogens survived in the deionized water used for soaking the cutting boards. This study revealed that immersion of kitchen cutting boards in electrolyzed oxidizing water could be used as an effective method for inactivating foodborne pathogens on smooth, plastic cutting boards.  相似文献   

5.
MR Choi  Q Liu  SY Lee  JH Jin  S Ryu  DH Kang 《Food microbiology》2012,32(1):191-195
This research was initiated to assess the efficacy of gaseous ozone for inactivation Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes in apple juice. Juice samples with solids content of 18, 36, and 72 °Brix inoculated with a culture cocktail of three foodborne pathogens were treated with gaseous ozone at a flow rate of 3.0 L/min and an ozone generation rate of 0.10, 0.90, 3.51, and 5.57 g/h for 0.5, 1, 5, and 10 min, respectively. The inactivation kinetics of gaseous ozone on foodborne pathogens conformed to the Weibull model. The time required to achieve a 5 log reduction (t5d) was estimated using the parameters of the Weibull model. The t5d increased with increasing solids content of apple juice. The ozone generation rate did not impart a significant effect (p > 0.05) on t5d. Gaseous ozone is effective at inactivating foodborne pathogens in apple juice but the efficacy is dependent on the solids content of the juice sample.  相似文献   

6.
The efficacy of pulsed UV‐light to inactivate of Escherichia coli O157:H7 and Listeria monocytogenes Scott A on salmon fillets was investigated in this study by evaluating the effects of treatment times and distance from the UV strobe. The sterilization system generated 5.6 J cm?2 per pulse at the lamp surface for an input voltage of 3800 V and three pulses per second. Skin or muscle side inoculated salmon fillet (8 cm × 1.5 cm) in a Petri dish was placed on shelf at three different distances from the UV strobe; 3, 5, and 8 cm. At each distance, the pulsed UV‐light treatment was performed for 15, 30, 45, and 60 s. For E. coli O157:H7, maximum log10 reduction was 1.09 log10 CFU g?1 on muscle side at 8 cm for 60‐s treatment, whereas 0.86 log10 CFU g?1 reduction on skin at 5 cm for 30‐s treatment. For L. monocytogenes Scott A, maximum reduction was 1.02 log10 CFU g?1 at 8 cm for 60‐s treatment on skin side, whereas 0.74 log10 CFU g?1 reduction on muscle at 8 cm for 60‐s treatment. The fillet's surface temperature increased up to 100degrC within 60‐s treatment time. Therefore, some fish samples were overheated after 30 and 45 s at 3‐ and 5‐cm distances from light source, respectively, which resulted in visual colour and quality changes. Overall, this study demonstrated that about one log reduction (c. 90%) of E. coli O157:H7 or L. monocytogenes could be achieved at 60‐s treatment at 8 cm distance without affecting the quality.  相似文献   

7.
ABSTRACT: Thermal inactivation of Escherichia coli O157:H7, Salmonella , and Listeria monocytogenes in ground pork was compared. The D (decimal reduction time at a certain heating temperature) values of E. coli O157:H7, Salmonella , and L. monocytogenes at 55 to 70°C were 33.44 to 0.048 min, 45.87 to 0.083 min, and 47.17 to 0.085 min, respectively. The z (temperature rise for 1 log10 reduction of D) value of E. coli O157:H7, Salmonella , and L. monocytogenes in ground pork was 4.94°C, 5.89°C, and 5.92°C, respectively. Significant difference was found on the D and z values between E. coli O157:H7 and Salmonella or between E. coli O157:H7 and L. monocytogenes . The D and z values of Salmonella in ground pork were not significantly different from L. monocytogenes .  相似文献   

8.
Sauerkraut was produced from shredded cabbage, as is typical in the United States, and from whole head cabbages, which is a traditional process in parts of Eastern Europe. The sauerkraut was inoculated with five strain mixtures of Escherichia coli O157:H7 and Listeria monocytogenes, and the populations of these bacteria, as well as lactic acid bacteria, pH, and titratable acidity, were monitored over the course of fermentation. Fermentation variables were temperature (18 and 22 degrees C) and salt concentration (1.8, 2.25, and 3%). For most of the analyses, the type of cabbage processing was a significant factor, although within cabbage type, neither salt nor fermentation temperature had significant effects. The final pH of the whole-head sauerkraut was lower than the shredded sauerkraut, but the titratable acidity was significantly higher in the shredded sauerkraut. E. coli O157:H7 and L. monocytogenes persisted in the brines for most of the fermentation, although at the end of the fermentations (15 days for shredded, 28 days for whole head), neither pathogen had detectable populations. E. coli populations decreased more rapidly in the shredded sauerkraut even though the pH was higher because of the higher total acidity in the shredded sauerkraut. Acid-tolerant strains of E. coli and L. monocytogenes were isolated from both shredded and whole-head sauerkraut at different salt concentrations and temperatures after 15 days of fermentation and could be detected at 35 days in the wholehead sauerkraut.  相似文献   

9.
Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica on strawberries by chlorine dioxide gas at different concentrations (0.5, 1, 1.5, 3 and 5 mgl(-1)) for 10 min were studied. A cocktail of three strains of each targeted organism (100 microl) was spotted onto the surface of the strawberries (approximately 8-9 log ml(-1)) separately followed by air drying, and then treated with ClO(2) gas at 22 degrees C and 90-95% relative humidity. Approximately a 4.3-4.7 logCFU reduction per strawberry of all examined bacteria was achieved by treatment with 5 mgl(-1) ClO(2) for 10 min. The inactivation kinetics of E. coli O157:H7, L. monocytogenes and S. enterica were determined using first-order kinetic models to establish D-values and z-values. The D-values of E. coli, L. monocytogenes and S. enterica were 2.6+/-0.2, 2.3+/-0.2 and 2.7+/-0.7 min, respectively, at 5 mgl(-1) ClO(2). The z-values of E. coli, L. monocytogenes and S. enterica were 16.8+/-3.5, 15.8+/-3.5 and 23.3+/-3.3 mgl(-1), respectively. Furthermore, treatment with ClO(2) gas significantly (p < or = 0.05) reduced the initial microflora (mesophilic, psychrotrophic bacteria, yeasts and molds) on strawberries. Treatment with ClO(2) gas did not affect the color of strawberries and extended the shelf-life to 16 days compared to 8 days for the untreated control.  相似文献   

10.
The production of thermally concentrated fruit juices uses temperatures high enough to achieve at least a 5-log reduction of pathogenic bacteria that can occur in raw juice. However, the transportation and storage of concentrates at low temperatures prior to final packaging is a common practice in the juice industry and introduces a potential risk for postconcentration contamination with pathogenic bacteria. The present study was undertaken to evaluate the likelihood of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella surviving in cranberry, lemon, and lime juice concentrates at or above temperatures commonly used for transportation or storage of these concentrates. This study demonstrates that cranberry, lemon, and lime juice concentrates possess intrinsic antimicrobial properties that will eliminate these bacterial pathogens in the event of postconcentration recontamination. Bacterial inactivation was demonstrated under all conditions; at least 5-log Salmonella inactivation was consistently demonstrated at -23 degrees C (-10 degrees F), at least 5-log E. coli O157:H7 inactivation was consistently demonstrated at -11 degrees C (12 degrees F), and at least 5-log L. monocytogenes inactivation was consistently demonstrated at 0 degrees C (32 degrees F).  相似文献   

11.
The objectives of this study were to examine inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Poona inoculated onto whole cantaloupe and treated with ClO(2) gas at different concentrations (0.5, 1.0, 1.5, 3.0 and 5.0 mg l(-1)) for different times (0, 2.0, 4.0, 6.0, 8.0 and 10.0 min). The effect of ClO(2) gas on the quality and shelf life of whole cantaloupe was also evaluated during storage at 22 degrees C for 12 days. A 100 microl inoculation of each targeted organism was spotted onto the surface (5 cm(2)) of cantaloupe rind (approximately 8-9 log CFU 5 cm(-2)) separately, air dried (60 min), and then treated with ClO(2) gas at 22 degrees C and 90-95% relative humidity for 10 min. Surviving bacterial populations on cantaloupe surfaces were determined using a membrane transferring method with a non-selective medium followed by a selective medium. The inactivation kinetics of E. coli O157:H7, L. monocytogenes and S. Poona were determined using nonlinear kinetics (Weibull model). A 3 log CFU reduction of E. coli O157:H7, L. monocytogenes and S. Poona were achieved with 5.0 mg l(-1) ClO(2) gas for 5.5, 4.2 and 1.5 min, respectively. A 5l og CFU reduction of S. Poona was achieved with 5.0 and 3.0 mg l(-1) ClO(2) gas for 6 and 8 min, respectively. A 4.6 and 4.3 log reduction was achieved after treatment with 5.0 mg l(-1) ClO(2) gas at 10 min for E. coli O157:H7 and L. monocytogenes, respectively. Treatment with 5.0 mg l(-1) ClO(2) gas significantly (p<0.05) reduced the initial microflora (mesophilic bacteria, psychrotrophic bacteria, and yeasts and molds) on cantaloupe by more than 2 log CFU cm(-2) and kept them significantly (p<0.05) lower than the untreated control during storage at 22 degrees C for 12 days. Treatment with ClO(2) gas did not significantly (p>0.05) affect the color of whole cantaloupe and extended the shelf life to 9 days compared to 3 days for the untreated control, when stored at ambient temperature (22 degrees C).  相似文献   

12.
The survival of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella was studied in apple, orange, pineapple, and white grape juice concentrates and banana puree. Pouches of juice concentrate or puree were inoculated with pathogens at a level > or = 10(3) CFU/g and stored at -23 degrees C (-10 degrees F). Pathogen survival was monitored at 6 and 24 h, once a week for four consecutive weeks, and biweekly thereafter until 12 weeks. When pathogens were not detectable by direct plating, samples were enriched in universal preenrichment broth for 72 h and plated on selective media. Results showed that E. coli O157:H7, L. monocytogenes, and Salmonella were recoverable from all five concentrates through 12 weeks of storage at -23 degrees C.  相似文献   

13.
A protocol enabling simultaneous detection of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella strains was devised and evaluated using artificially contaminated fresh produce. Association of Official Analytical Chemists (AOAC)-approved polymerase chain reaction (PCR) detection methods for three human pathogens were modified to enable simultaneous and real-time detection with high throughput capability. The method includes a melting-curve analysis of PCR products, which serves as confirmatory test. The modified protocol successfully detected all three pathogens when fresh produce was washed with artificially contaminated water containing E. coli O157:H7 and S. typhimurium down to the predicted level of 1 to 10 cells/ml and L. monocytogenes at 1000 cells/ml. The ability to monitor several pathogens simultaneously will save time and increase our ability to assure food safety.  相似文献   

14.
ABSTRACT: Inactivation of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes in iceberg lettuce by aqueous chlorine dioxide (ClO2) treatment was evaluated. Iceberg lettuce samples were inoculated with approximately 7 log CFU/g of E. coli O157:H7, S. typhimurium, and L. monocytogenes. Iceberg lettuce samples were then treated with 0, 5, 10, or 50 ppm ClO2 solution and stored at 4 °C. Aqueous ClO2 treatment significantly decreased the populations of pathogenic bacteria on shredded lettuce (P < 0.05). In particular, 50 ppm ClO2 treatment reduced E. coli O157:H7, S. typhimurium, and L. monocytogenes by 1.44, 1.95, and 1.20 log CFU/g, respectively. The D10‐values of E. coli O157:H7, S. typhimurium, and L. monocytogenes in shredded lettuce were 11, 26, and 42 ppm, respectively. The effect of aqueous ClO2 treatment on the growth of pathogenic bacteria during storage was evaluated, and a decrease in the population size of these pathogenic bacteria was observed. Additionally, aqueous ClO2 treatment did not affect the color of lettuce during storage. These results suggest that aqueous ClO2 treatment can be used to improve the microbial safety of shredded lettuce during storage.  相似文献   

15.
The effects of ohmic heating on reduction of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in orange and tomato juice were investigated. Orange and tomato juice inoculated with E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes were subjected to ohmic heating with selected parameters including electric field strength from 10 to 20 V/cm and treatment times from 0 to 540 s. The number of pathogens was reduced by increasing the electric field strength from 10 to 20 V/cm as well as increasing treatment time. The population of E. coli O157:H7 was reduced more than 5 log after 120, 210, and 540 s of treatment in orange juice with 20, 15, and 10 V/cm electric field strengths, respectively. In tomato juice, levels of E. coli O157:H7 were reduced more than 5 log after 90, 180, and 480 s with the same electric field strengths. Similar phenomena were observed for Salmonella Typhimurium and L. monocytogenes, but E. coli O157:H7 was the most resistant to ohmic heating treatment. These results show that ohmic heating is potentially useful for inactivation of E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes and that the effect of inactivation depends on applied electric field strength, treatment time, pathogen species, and type of juice.  相似文献   

16.
The effectiveness of low gamma-irradiation doses in the destruction of Escherichia coli O 157 : H7 and Listeria monocytogenes in raw beef sausages was investigated. Raw samples of fresh manufactured beef sausage were subjected to gamma-irradiation at doses of 0, 1, 2, and 3 kGy. Then samples were cold-stored (4 +/- 1 degrees C) for 12 days and the effects of irradiation and storage on the counts of these harmful bacteria were studied. Moreover, the effects of irradiation and storage on the percentages of free fatty acids (FFAs) in lipids, on the p-anisidine values of lipids, solubility of sarcoplasmic and myofibrilar proteins, and water-holding capacity (WHC) were also determined. The results showed that gamma-irradiation at 1 and 2 kGy significantly reduced the counts of E. coli O 157 : H7 and L. monocytogenes, while 3 kGy dose effectively eliminated these bacteria by more than 4 log and 3 log units, respectively, and could keep their counts below the detection level during storage. Gamma-irradiation had no significant effects on the percentages of FFAs in lipids, solubility of sarcoplasmic and myofibrilar proteins, and WHC of samples, while it significantly increased the p-anisidine value of lipids. During storage, significant increases in the percentages of FFAs and p-anisidine values were observed for lipids of irradiated and nonirradiated sausages, while the solubility of sarcoplasmic and myofibrilar proteins showed no significant changes. Moreover, samples of irradiated and nonirradiated sausages showed significant decreases in their WHC during the first 6 days of storage at 4 +/- 1 degrees C, then showed no significant changes. Finally, gamma-irradiation at a dose of 3 kGy appeared to be sufficient to improve the microbiological safety of raw beef sausages without adverse effects on their chemical properties.  相似文献   

17.
18.
Time and temperature pasteurization conditions common in the Wisconsin cider industry were validated using a six-strain cocktail of Escherichia coli O157:H7 and acid-adapted E. coli O157:H7 in pH- and degrees Brix-adjusted apple cider. Strains employed were linked to outbreaks (ATCC 43894 and 43895, C7927, and USDA-FSIS-380-94) or strains engineered to contain the gene for green fluorescent protein (pGFP ATCC 43894 and pGFP ATCC 43889) for differential enumeration. Survival of Salmonella spp. (CDC 0778. CDC F2833, and CDC H0662) and Listeria monocytogenes (H0222, F8027, and F8369) was also evaluated. Inoculated cider of pH 3.3 or 4.1 and 11 or 14 degrees Brix was heated under conditions ranging from 60 degrees C for 14 s to 71.1 degrees C for 14 s. A 5-log reduction of nonadapted and acid-adapted E. coli O157:H7 was obtained at 68.1 degrees C for 14 s. Lower temperatures, or less time at 68.1 degrees C, did not ensure a 5-log reduction in E. coli O157:H7. A 5-log reduction was obtained at 65.6 degrees C for 14 s for Salmonella spp. L. monocytogenes survived 68.1 degrees C for 14 s, but survivors died in cider within 24 h at 4 degrees C. Laboratory results were validated with a surrogate E coli using a bench-top plate heat-exchange pasteurizer. Results were further validated using fresh unpasteurized commercial ciders. Consumer acceptance of cider pasteurized at 68.1 degrees C for 14 s (Wisconsin recommendations) and at 71.1 degrees C for 6 s (New York recommendations) was not significantly different. Hence, we conclude that 68.1 degrees C for 14 s is a validated treatment for ensuring adequate destruction of E. coli O157:H7, Salmonella spp., and L. monocytogenes in apple cider.  相似文献   

19.
A continuous-flow apparatus was developed to measure thermal resistance (D- and z-values) of microorganisms at temperatures above 65 degrees C. This apparatus was designed to test whether vegetative microorganisms exhibited unusually high thermal resistance that prevented them from being completely eliminated at temperatures applicable to vacuum-steam-vacuum processes (116 to 157 degrees C). The apparatus was composed of a high-pressure liquid chromatography pump, a heating unit, and a cooling unit. It was designed to measure small D-values (<1 s). Three randomly selected organisms, Listeria monocytogenes, Salmonella Heidelberg, and Escherichia coli O157:H7 suspended in deionized water were tested in the continuous-flow apparatus at temperatures ranging from 60 to 80 degrees C. Studies showed that the D-values of these organisms ranged from 0.05 to 20 s. Heating at 80 degrees C was found to be basically the physical limit of the system. Experimental results showed that L. monocytogenes, Salmonella Heidelberg, and E. coli O157:H7 did not exhibit unusual heat resistance. The conditions used in the vacuum-steam-vacuum processes should have completely inactivated organisms such as L. monocytogenes, Salmonella Heidelberg, and E. coli O157:H7 if present on food surfaces. The complete destruction of bacteria during vacuum-steam-vacuum processes might not occur because the surface temperatures never reached those of the steam temperatures and because bacteria might be hidden beneath the surface and was thus never exposed to the destructive effects of the steam.  相似文献   

20.
The objective of this study was to develop a practical and effective method for inactivating or substantially reducing Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes on apples, oranges, and tomatoes. Apples, oranges, and tomatoes were spot-inoculated with five-strain mixtures of E. coli O157:H7, Salmonella Enteritidis, and L. monocytogenes near the stem end and were submerged in sterile deionized water containing 1.5% lactic acid plus 1.5% hydrogen peroxide for 15 min at 40 degrees C. Inoculated samples treated with sterile deionized water at the same temperature and for the same duration served as controls. The bacterial pathogens on fruits subjected to the chemical treatment were reduced by >5.0 log10 CFU per fruit, whereas washing in deionized water decreased the pathogens by only 1.5 to 2.0 log10 CFU per fruit. Furthermore, substantial populations of the pathogens survived in the control wash water, whereas no E. coli O157:H7, Salmonella Enteritidis, or L. monocytogenes cells were detected in the chemical treatment solution. The sensory and qualitative characteristics of apples treated with the chemical wash solution were not adversely affected by the treatment. It was found that the treatment developed in this study could effectively be used to kill E. coli O157:H7, Salmonella Enteritidis, and L. monocytogenes on apples, oranges, and tomatoes at the processing or packaging level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号