首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It can be shown that from deformation values which may easily be found the J-integral-load-line trace of a large tensile specimen can be determined and that initiation values of the J-integral obtained from a small specimen (here CT-specimens) can also be transferred to other specimen shapes and sizes. Since this method is based on a formulation independent of geometry, it is likely that it can be applied successfully to more complex specimens and even component geometries.  相似文献   

2.
Numerical evaluations in combination with experiments on the basis of the J-integral methods are a necessary step in the chain of transferability from small specimens to real structures.For three cases, single-edge notched specimens of different thicknesses, flat plates under tension containing two through-cracks and side-grooved compact specimens of various steels, both finite element calculations including crack growth and experiments using the partial unloading technique were performed.The results show a good agreement of the experimental and numerical J-values and confirm the experimental procedure to evaluate J from the work done on the specimen.Moreover, for the single-edge notched specimen the strong influence of the angular stiffness of the loading system on the specimen behaviour is demonstrated.  相似文献   

3.
J-integral fracture toughness tests were performed on welded 304 stainless steel 2-inch plate and 4-inch diameter pipe. The 2-inch plate was welded using a hot-wire automatic gas tungsten arc process. This weldment was machined into 1T and 2T compact specimens for single specimen unloading compliance J-integral tests. The specimens were cut to measure the fracure toughness of the base metal, weld metal and the heat affected zone (HAZ). The tests were performed at 550°F, 300°F and room temperature. The results of the J-integral tests indicate that the JIc of the base plate ranged from 4400 to 6100 in lbs/in2 at 550°F. The JIc values for the tests performed at 300°F and room temperature were beyond the measurement capacity of the specimens and appear to indicate that JIc was greater than 8000 in lb/in2. The J-integral tests performed on the weld metal specimens indicate that the JIc values ranged from 930 to 2150 in lbs/in2 at 550°F. The JIc values of the weld metal specimens tested at 300°F and room temperature were 2300 and 3000 in lbs/in2 respectively. One HAZ specimen was tested at 550°F and found to have a JIc value of 2980 in lbs/in2 which indicates that the HAZ is an average of the base metal and weld metal thoughness. These test results indicate that there is a significant reduction in the initiation fracture toughness as a result of welding.The second phase of this task dealt with the fracture toughness testing of 4-inch diameter 304 stainless steel pipes containing a gas tungsten arc weld. The pipes were tested at 550°F in four point bending. Three tests were performed, two with a through wall flaw growing circumferentially and the third pipe had a part through radial flaw in combination with the circumferential flaw. These tests were performed using unloading compliance and d.c. potential drop crack length estimate methods. The results of these test indicate that the presence of a complex crack (radial and circumferential) reduces in the initiation toughness and the tearing modulus of the pipe material compared to a pipe with only a circumferentially growing crack.  相似文献   

4.
The paper presents the results of a theoretical investigation whose objective has been to see whether there are advantages to be gained from using the modified J-integral in procedures for estimating the critical crack length for CANDU pressure tubes. For typical operation conditions, and with irradiated tubes having critical crack lengths over a wide range, it is shown that the slope of the modified J-integral JM-Δa crack growth resistance curve for a pressure tube crack is only marginally greater than the slope of the corresponding deformation J-integral JD-Δa curve; the results are expressed in terms of the parameter Z*, which is dJM/da − dJD/da and the parameter Q, which is the fractional difference between dJM/da and dJD/da. In the light of these findings, there would appear to be little advantage to be gained in using JM, rather than JD, as a characterizing parameter for crack growth in a CANDU pressure tube.  相似文献   

5.
The J-integral is an important parameter for the ductile fracture mechanics assessment of components. With an appropriate modification it may even be applied to inhomogeneous materials where the material characteristics may depend strongly on the location, e.g. in welded joints. Experimental and numerical investigations on fracture mechanics specimens made from a welded joint including the heat affected zone show the influence of the different material parameters on the J-integral. Also, the influence of residual stress on the J-integral and on other fracture mechanics parameters is shown.  相似文献   

6.
Specimen reconstitution techniques offer the possibility to obtain fracture toughness measurements when only small amounts of material are available. In order to obtain extra information from charpy specimens, an electron-beam weld reconstitution method is established to obtain compact tension specimens (CT) from the broken halves of the charpy ones. Three types of reconstituted CT specimens with different weld configurations are tested in order to analyse the influence of specimen configuration on fracture toughness evaluation. The validity of the fracture toughness characterisation is analysed by comparing J-integral resistance curves (JR curves) of specimens with insert and those of reference specimens without insert.  相似文献   

7.
Fracture resistance (J–R) curves, which are used for elastic–plastic fracture mechanics analyses, are known to be dependent on the cyclic loading history. The objective of this paper is to investigate the effect of reverse cyclic loading on the J–R curves in C(T) specimens. The effect of two parameters was observed on the J–R curves during the reverse cyclic loading. One was the minimum-to-maximum load ratio (R) and the other was the incremental plastic displacement (δcyclei), which is related to the amount of crack growth that occurs in a cycle. Fracture resistance tests on C(T) specimens with varying the load ratio and the incremental plastic displacement were performed, and the test results showed that the J–R curves were decreased with decreasing the load ratio and decreasing the incremental plastic displacement. Direct current potential drop (DCPD) method was used for the detection of crack initiation and crack growth in typical laboratory J–R tests. The values of crack initiation J-integral (JI) and crack initiation displacement (δi) were also obtained by using the DCPD method.  相似文献   

8.
Both tensile tests on notched specimens and fracture mechanics experiments on axisymmetrically cracked specimens were performed on one heat of A508 steel (AFNOR: 16MND5). Tensile tests on notched geometries were made to determine the characteristic parameters used in a statistical analysis of cleavage fracture proposed previously [1]. Tests on cracked specimens were carried out between −80°C and −20°C to investigate the critical values of stable crack growth, Δac, occurring before unstable cleavage fracture. At a given temperature a large scatter in the values of critical crack growth, Δac, was observed.To interpret these results a model derived previously for cleavage crack initiation [1] is used. In this model the Weibull stress is calculated by the finite element method for three different initial crack lengths covering stable growth increments observed experimentally. It is shown that this model accounts reasonably well for the observed effects.  相似文献   

9.
The J-Integral method is of great importance for the experimental determination of specific material properties. Therefore methods for detection of crack-initiation and also of the Jc-value of fatigue precracked Charpy-type specimens under quasistatic and dynamic loading are presented. The dynamic tests were executed on a modified impact testing, machine, instrumented by TVFA of TU Vienna. The crack initiation was determined from the force-deflection diagram. Additionally the electric potential was recorded without isolation and electric current supply. The proof was effected by heat-tinting and scanning electron micrographs.  相似文献   

10.
By means of the test results it could be shown that a correlation exists between the ductile fracture mechanics parameters for crack initiation Ji and JIc and the notch impact energy, in which initially only values from the upper shelf of the notch energy were taken into consideration. Owing to a statistical evaluation and with the aid of the relationships indicated, the user can chose the probability with which the value selected is to be situated within the range in question by which the width of the scatter is presupposed. By consideration of all the distributed values, specifically the Ji, JIc and J50 impact energy values and the material characteristic values from the tensile test, it could be demonstrated on two vessels made of modified 22 NiMoCr 3 7 (60 J on the upper shelf of the notch impact energy) and 20 MnMoNi 5 5 (200 J on the upper shelf of the notch impact energy) respectively with axial external cracks that the experimental instability load can be assigned to the upper bound of the scatter band formed from the crack initiation values Ji (JIc).  相似文献   

11.
In the frame of our analytical work the applicability of ductile fracture mechanical J-integral concept on mechanical and thermal shock loaded structures with flaws is investigated. By that the behaviour of possible flaws in components of power plants during accidents can be described (e.g. reactor pressure vessel and piping during emergency cooling).The analyses presented in this paper have been performed with a version of the finite element code ADINA [1] extended by fracture mechanical options. The postanalyses of the first series of pressurized thermal shock experiments (PTSE-1A, B, C) performed at ORNL show stress intensity factors (KI) calculated from J-integrals which are about 10% lower than values of OCA programs [2] based on the linear elastic K-concept usually used for brittle materials. The discrepancy may be referred to different treatment of the influence of plasticity. The results assessed in the frame of the cleavage fracture concept coincide well with the measured times respectively crack tip temperatures at crack initiation and arrest.In the first thermal shock experiment (NKS-1) performed at the MPA-Stuttgart a circumferentially deep cracked test cylinder with overall upper shelf material conditions has been investigated. The postcalculations based on the J-integral with JR-controlled crack growth show good coincidence between analytical determined and measured structure and fracture mechanical quantities but they are accompanied with numerical problems due to unloading and large plasticity effects.  相似文献   

12.
Applicability of nonlinear fracture mechanics parameters, i.e. J-integral, crack tip opening displacement (CTOD), and crack tip opening angle (CTOA), to evaluation of stress corrosion crack (SCC) propagation rate was investigated using fully annealed zirconium plates and Zircaloy-2 tubing, both of which produce SCC with comparatively large plastic strain in an iodine environment at high temperatures.Tensile SCC tests were carried out at 300°C for center-notched zirconium plates and internal gas pressurization SCC tests at 350°C, for Zircaloy-2 tubing, to measure the SCC crack propagation rate. The J-integral around semi-elliptical SCC cracks produced in Zircaloy-2 tubing was calculated by a three-dimensional finite element method (FEM) code.The test results revealed that the SCC crack propagation rate dc/dt could be expressed as a function of the J-integral, which is the most frequently used parameter in nonlinear fracture mechanics, by the equation dc/dt = C · Jn, where C and n were experimental constants.Among the other parameters, CTOD and CTOA, the latter appeared to be useful for assessing the crack propagation rate, because it had a tendency to hold a constant value at various crack depths.  相似文献   

13.
The present study demonstrates the numerical prediction of experimental specimen J-R curve using Gurson-Tvergaard-Needleman phenomenologically based material model. The predicted specimen J-R curve is used to determine the geometric independent initiation fracture toughness (JSZWc) value that compares well with experimental result. Using the experimentally determined and numerically predicted JSZWc values and specimen J-R curves, the accuracy of predicting the fracture behaviour of the cracked component is judged. Thus the present study proposed a coupled phenomenological and fracture mechanics approach to predict the crack initiation and instability stages in cracked piping components using numerically predicted specimen J-R curve obtained from tensile specimens testing data.  相似文献   

14.
Ontario Hydro has developed a leak-before-break (LBB) methodology for application to large diameter piping (21, 22 and 24 inch) Schedule 100 SA106B heat transport (HT) piping as a design alternative to pipe whip restraints and in recognition of the questionable benefits of providing such devices. Ontario Hydro's LBB approach uses elastic-plastic fracture mechanics (EPFM).In order to assess the stability of HT piping in the presence of hypothetical flaws, the value of the material J-integral associated with crack extension (JR curve) must be known. In a material test program J-resistance curves were determined from various pipe heats and four different welding procedures that were developed by Ontario Hydro for nuclear Class 1 piping. The test program was designed to investigate and quantify the effect of various factors such as test temperature, crack plane orientation and welding effects which have an influence on fracture properties. An acceptable lower bound J-resistance curve for the piping steels and welds were obtained by machining maximum thickness specimens from the pipes and weldments and by testing side-grooved compact tension specimens. This paper addresses the effect of test temperature and post-weld heat treatment on the J-resistance curves from the welds.The fracture toughness of all the welds at 250°C was lower than that at 20°C. Welds that were post-weld heat treated showed high crack initiation toughness, Jlc, rising J-resistance curves and stable and ductible crack extension. Non post-weld heat treated welds, while remaining tough and ductile, showed comparatively lower JIc, and J-resistance curves at 250°C. This drop in toughness is possibly due to a dynamic strain aging mechanism evidenced by serrated load-displacement curves. The fracture toughness of non post-weld heat treated welds increased significantly after a comparable post-weld heat treatment.The test procedure was validated by comparing three test results against independent tests conducted by Materials Engineering Associates (MEA) of Lanham, Maryland. The JIc and J-resistance curves obtained by Ontario Hydro and MEA were comparable.  相似文献   

15.
As a necessary step in the chain of transferability from small specimens to actual structures the numerical evaluations of two crack-growth resistance experiments on the basis of the J-integral and utilising sidegrooved compact specimens of different sizes, tested at room temperature and at 285°C are discussed. The necessary experimental and numerical techniques are presented:
• -The partial unloading technique as applied in the IWM is applicable with high accuracy and reproducability in the relevant temperature range up to operating temperature.
• -The J-evaluation combined with a node shifting and releasing technique as implemented in the IWM-version of ADINA proved to be a powerful and economic tool even for parameter studies.
The results of the experiments and of the numerical evaluations are presented as force-displacement diagrams and as J-integral vs. crack extension curves. The good qualitative and quantitative agreement supports the experimental evaluation of J from the force-displacement diagram and validitates the numerical procedures to be applied and extended to real structues.

References

[1]ASTM E 399-81 Standard test method for plane-strain fracture toughness of metallic materials, Annual Book of ASTM Standards (1981) Part 10, Philadelphia.[2]ASTM E 813-81 Standard test for JIC, a measure of fracture toughness, Annual Book of ASTM Standards (1981) Part 10, Philadelphia.[3]P. Albrecht, W.R. Andrews, J.P. Gudas, J.A. Joyce, F.J. Loss, D.E. McCabe, D.W. Schmidt and W.A. VanDerSluys, Tentative test procedure for determining the plane strain JI-R-curve, Journal of Testing and Evaluation, JTEVA 10 (6) (1982), pp. 245–251. View Record in Scopus | Cited By in Scopus (5)[4]K.J. Bathe, ADINA, a finite element program for automatic dynamic incremental nonlinear analysis, Report 82 448-1 (2nd Ed.), Massachusetts Institute of Technology, Cambridge, Mass., USA (1980).[5]J.R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. 35 (1968).[6]D.M. Parks, The virtual crack extension method for nonlinear material behavior, Comp. Methods Appl. Mech. Engrg. 12 (1977).[7]H.G. deLorenzi, J-integral and crack growth calculations with the finite element program ADINA, Methodology for plastic fracture, EPRI Report SRD-78-124 (1978).[8]H.G. deLorenzi and C.F. Shih, Fracture parameters in side-grooved specimens, General Electric U.S. Report No. 80 CRD 211 (1980).[9]F.J. Loss, B.H. Menke, R.A. Gray Jr. and J.R. Hawthorne, J-R-curve characterization of irradiated nuclear pressure vessel steels, Proceedings of US. NRC, CSNI Specialist's Meeting on Plastic Tearing Instability St. Louis, Missouri, USA (1979).  相似文献   

16.
The paper deals with a quality control system based on: (1) limit stage design for a given level of failure probability (Pf≤10−6), and (2) fracture mechanics requirements for welds, the heat-affected zone (HAZ), and parent material (St 355 E). This quality control system was carried out under on-site-conditions when building a steel-sheet/reinforced concrete composite construction of a containment for a nuclear power station. The basic element of the quality assurance system are the control welds produced simultaneously with the welds on site (manual electrode welding). The materials testing program of such control welds and statistical evaluation of test results are described. The results show a fairly good reproducibility of measured J-integral values of welds gained from on-site-specimens (control welds) and those obtained from pre-tested welding technologies. The objective of this paper is to encourage the application of the proposed semi-probabilistic fracture mechanics approach for cases, when the area of proven experience for designing and fabricating welded metallic constructions must be left. Some conclusions of practical interest are discussed, for instance: (1) restrictions for high-strength steels, resulting from the limitation of yield to ultimate tensile strength ratio (Rp0,2/Rm≤0.75) in the standards and regulations; (2) importance of demand for a portion of plastic component of the J-integral to exclude brittle fracture of welds; and (3) derivation of a fracture toughness criterion for application to high strength steels.  相似文献   

17.
According to the J concept, information is reported about the crack resistance behaviour up to 8 mm crack growth of side-grooved CT-25 as well as CCT-25 specimens made from German standard steel StE 460. Numerical simulations controlled by JR curves make the calculation of J from the stresses and strains of specimen models during large crack growth feasible. These data allow a comparison to standards and rules describing the evaluation of J from experiments. Using stress, strain and displacement fields from a plane-strain finite-element analysis, the extended J concept is discussed concerning larger ductile crack growth. Additionally, the distribution of other fracture mechanics parameters such as the crack tip opening displacement (CTOD) and the crack tip opening angle (CTOA) are presented for larger crack growth.  相似文献   

18.
In the design assessment of fast reactor plant components, prevention of crack initiation from defect-free structures is a main concern. However, existence of initial defects such as weld defects cannot be entirely excluded and this potential cracks are to be evaluated to determine if initiated cracks do not lead to component failure instantly. Therefore, evaluation of structural integrity in the presence of crack-like defects is also important to complement the formal design assessment. The authors have been developing a guideline for assessing long-term structural integrity of fast reactor components using detailed inelastic analysis and nonlinear fracture mechanics. This guideline consists of two parts, evaluation of defect-free structures and flaw evaluation. In the latter, creep-fatigue is considered to be one of the most essential driving force for crack propagation at high operating temperature exceeding 500 °C. The uses of J-integral-type parameters (fatigue J-integral range and creep J-integral) are recommended to describe creep-fatigue crack propagation behavior in the guideline. This paper gives an outline of the simplified evaluation method for creep-fatigue crack propagation.  相似文献   

19.
Impact-loaded, precracked Charpy specimens often play a crucial role in irradiation surveillance programs for nuclear power plants. However, the small specimen size B = W = 10 mm limits the maximum value of cleavage fracture toughness Jc that can be measured under elastic—plastic conditions without loss of crack tip constraint. In this investigation, plane strain impact analyses provide detailed resolution of crack tip fields for impact-loaded specimens. Crack tip stress fields are characterized in terms of JQ trajectories and the toughness-scaling model which is applicable for a cleavage fracture mechanism. Results of the analyses suggest deformation limits at fracture in the form of b > MJc/σ0, where M approaches 25–30 for a strongly rate-sensitive material at impact velocities of 3–6 m s−1. Based on direct comparison of the static and dynamic J values computed using a domain integral formulation, a new proposal emerges for the transition time, the time after impact at which interial effects diminish sufficiently for simple evaluation of J using the plastic η factor approach.  相似文献   

20.
Low cycle fatigue of welded joints: new experimental approach   总被引:2,自引:0,他引:2  
To take into account the reduced fatigue strength of welded joints, a reduction life factor applied on fatigue curves (Jf value) was introduced into the RCC-MR [Design and Construction Rules for Mechanical Components of FBR Nuclear Islands, AFCEN, 1993], for the design and construction of fast breeder reactors. To better assess this factor, previous work showed that mechanical behavior of a welded assembly is influenced by the geometry of the weld and by the interaction of the different cyclic plastic behavior of the two materials: base metal (BM) and weld metal (WM). A new procedure (named FFAST) was performed on welded joint specimens extracted from butt-welded pipe connections (uniaxial tensile–compressive load). An innovative experimental approach is proposed to study the local mechanical behavior of the welded joint specimens and then determine the Jf parameter. The main advantage of the method is to avoid problems due to the relative stiffness of weld part versus the BM part of the specimen. A continuous recording of the stress and strain in the weld allows an estimation of the mechanical behavior and finally the fatigue life of the joint. Observations of the crack surface show two different crack initiation zones near the weld depending on the load level. Calculations of the tests and comparison with experimental results are presented. These studies make it possible to assess in a practical way the Jf design method. It appears that Jf value cannot be considered as a single value for it is influenced by several factors depending on the weldment and on the load level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号