首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The nucleus accumbens (NA) has an integrative role in behavior and may mediate addictive and psychotherapeutic drug action. Whole cell recording techniques were used to characterize electrophysiologically and pharmacologically high- and low-threshold voltage-dependent Ca2+ currents in isolated NA neurons. High-threshold Ca2+ currents, which were found in all neurons studied and include both sustained and inactivating components, activated at potentials greater than -50 mV and reached maximal activation at approximately 0 mV. In contrast, low-threshold Ca2+ currents activated at voltages greater than -64 mV with maximal activation occurring at -30 mV. These were observed in 42% of acutely isolated neurons. Further pharmacological characterization of high-threshold Ca2+ currents was attempted using nimodipine (Nim), omega-conotoxin-GVIA (omega-CgTx) and omega-agatoxin-IVA (omegaAga), which are thought to identify the L, N, and P/Q subtypes of Ca2+ currents, respectively. Nim (5-10 muM) blocked 18%, omegaCgTx (1-2 muM) blocked 25%, and omegaAga (200 nM) blocked 17% of total Ca2+ current. Nim primarily blocked a sustained high-threshold Ca2+ current in a partially reversible manner. In contrast, omegaCgTx irreversibly blocked both sustained and inactivating components. omegaAga irreversibly blocked only a sustained component. In all three of these Ca2+ channel blockers, plus 5 muM omega-conotoxin-MVIIC to eliminate a small unblocked Q-type Ca2+ current (7%), a toxin-resistant high-threshold Ca2+ current remained that was 32% of total Ca2+ current. This current inactivated much more rapidly than the other high-threshold Ca2+ currents, was depressed in 50 muM Ni2+ and reached maximal activation 5-10 mV negative to the toxin-sensitive high-threshold Ca2+ currents. Thus NA neurons have multiple types of high-threshold Ca2+ currents with a large component being the toxin-resistant "R" component.  相似文献   

2.
Macroscopic T-type Ca2+ currents, which are often observed in fetal and neonatal cardiac muscle cells, were not found in normal (0 of 17) adult feline ventricular myocytes. However, they were present in most (15 of 21) myocytes isolated from adult feline left ventricles with long-standing pressure-overload-induced hypertrophy. This is the first study to provide evidence in a large mammal, such as the cat, that T-type Ca2+ channels may be reexpressed in adults in association with hypertrophy resulting from slow progressive pressure overload. Importantly, this expression was stable for the duration of the hypertrophy process and was not associated with abrupt pressure overload. T-type Ca2+ currents were separated from L-type Ca2+ currents by exploiting the differences in their voltage dependence of steady-state inactivation. Depolarizations from -80 mV revealed a rapidly activating inward current that peaked in magnitude at -30 mV (-1.8 +/- 0.9 [mean +/- SD] pA/pF) and fully inactivated within 100 milliseconds in 15 of 21 hypertrophied myocytes studied. Further depolarizations activated progressively less T-type Ca2+ current, so that at +10 mV the L-type Ca2+ current predominated. In the hypertrophied myocytes that demonstrated both T-type and L-type Ca2+ currents, two distinct peaks occurred in their current-voltage relations. T-type Ca2+ currents were not evident in any of the 17 normal adult feline left ventricular myocytes studied. The purpose of T-type Ca2+ currents in hypertrophy is unclear. However, their presence may make hypertrophied myocardium more prone to spontaneous action potentials and increase the likelihood for arrhythmias in partially depolarized hypertrophied myocardium.  相似文献   

3.
The whole cell variant of the patch clamp technique was used to investigate the actions of two novel insect peptides on high voltage-activated Ca2+ currents in cultured dorsal root ganglion (DRG) neurones. The insect peptides (PMP-D2 and PMP-C) were isolated originally from insect brains and fat bodies, and have been found to have similar three-dimensional structures to the N-type Ca2+ channel inhibitor omega-conotoxin GVIA (omega-CgTx GVIA). High voltage-activated Ca2+ currents were activated from a holding potential of -90 mV by depolarizing step commands to 0 mV. Extracellular application of synthetic PMP-D2 or PMP-C (1 microM) attenuated high voltage-activated Ca2+ currents. The effects of PMP-C were strongly dependent on the frequency of current activation, but inhibition was apparent and reached a steady state after 20 steps when currents were evoked for 30 msec at 0.1 Hz. The actions of the two insect peptides overlapped both with each other and with omega-CgTx GVIA, suggesting that N-type Ca2+ current was predominantly sensitive to these peptides. Low voltage-activated T-type current and 1,4-dihydropyridine sensitive L-type Ca2+ currents were insensitive to 1 microM PMP-D2 and PMP-C, which indicates a degree of selectivity. The presence of a fucose group on PMP-C abolished the ability of this peptide to attenuate high voltage-activated Ca2+ currents, which may reflect a mechanism by which peptide function could be regulated in insects. The electrophysiological data are supported by studies on 45Ca2+ influx into rat cerebrocortical synaptosomes. Both PMP-D2 (10 microM), PMP-C (10 microM) and omega-CgTx GVIA (1 microM) attenuated a proportion of 45Ca2+ influx into the synaptosomes, but additive effects of these peptides were not observed. We conclude that these naturally occurring peptides obtained from invertebrate preparations have inhibitory effects on N-type Ca2+ channels. Although the peptides have related three-dimensional structures, they have distinct amino acid sequences and appear to have different mechanisms of action to produce inhibition of mammalian neuronal high voltage-activated Ca2+ channels.  相似文献   

4.
Currents arising from human alpha1E and alpha1Ebeta3 Ca2+ channel subunits expressed in HEK-293 cells were examined with whole-cell recording methods and compared to properties of T-current in DRG neurons studied under identical ionic conditions. Coexpression of alpha1E subunit with the beta3 subunit shifted activation to more negative potentials. Activation and deactivation of both variants were comparable at most voltages, with deactivation becoming faster, but less voltage-dependent, at more negative potentials. The inactivation time course for alpha1E and alpha1Ebeta3 currents was best described by at least two exponential components. Recovery from inactivation was markedly voltage-dependent and similar for both constructs. In comparison to alpha1E and alpha1Ebeta3 constructs, T current activation was shifted to more negative potentials, activation was typically slower, deactivation exhibited a steeper voltage-dependence, and recovery from inactivation was less voltage-dependent. Over most of the activation range, native T current inactivated more completely and in a single exponential fashion. Despite some pharmacological similarities (e.g. octanol, barbiturates) between alpha1E and T-type currents, aspects of blockade by amiloride and phenytoin appear to distinguish alpha1E current from T-type currents. The results define several distinguishing features of alpha1E currents that distinguish them from native T-type currents.  相似文献   

5.
In contrast to other kinds of voltage-gated Ca2+ channels, the underlying molecular basis of T-type and R-type channels is not well-understood. To facilitate comparisons with cloned Ca2+ channel subunits, we have carried out a systematic analysis of the properties of T-type currents in undifferentiated NG108-15 cells and R-type currents in cerebellar granule neurons. Marked differences were found in their biophysical and pharmacological features under identical recording conditions. T-type channels became activated at potentials approximately 25 mV more negative than R-type channels; however, T-type channels required potentials approximately 15 mV less negative than R-type channels to be available. Accordingly, T-type channels display a much larger overlap between the curves describing inactivation and activation, making them more suitable for generating sustained Ca2+ entry in support of secretion or pacemaker activity. In contrast, R-type channels are not equipped to provide a steady current, but are very capable of supplying transient surges of Ca2+ influx. In response to a series of increasingly strong depolarizations T-type and R-type Ca2+ channels gave rise to very different kinetic patterns. T-type current records crossed each other in a characteristic pattern not found for R-type currents. These biophysical distinctions were independent of absolute membrane potential and were, therefore, complementary to the conventional categorization of T- and R-type Ca2+ channels as low- and high-voltage activated. R-type channels deactivated approximately eight-fold more quickly than T-type channels, with clear consequences for the generation of divalent cation influx during simulated action potentials. Pharmacological comparisons revealed additional contrasts. R-type current was responsive to block by omega-Aga IIIA but not nimodipine, while the opposite was true for T-type current. Both channel types were potently inhibited by the non-dihydropyridine compound mibefradil. In all respects examined, R-type currents were similar to currents derived from expression of the alpha1E subunit whereas T-type currents were not.  相似文献   

6.
7.
Low-voltage-activated T-type Ca2+ channels are present in most excitable tissues including the heart (mainly pacemaker cells), smooth muscle, central and peripheral nervous systems, and endocrine tissues, but also in non-excitable cells, such as osteoblasts, fibroblasts, glial cells, etc. Although they comprise a slightly heterogeneous population, these channels share many defining characteristics: small conductance (< 10 pS), similar Ca2+ and Ba2+ permeabilities, slow deactivation, and a voltage-dependent inactivation rate. In addition, activation at low voltages, rapid inactivation, and blockade by Ni2+ are classical properties of T-type Ca2+ channels, which are less specific. T-type Ca2+ channels are weakly blocked by standard Ca2+ antagonists. Pharmacological blockers are scarce and often lack specificity and/or potency. The physiological modulation of T-type Ca2+ currents is complex: they are enhanced by endothelin-1, angiotensin II (AT1-receptor), ATP, and isoproterenol (cAMP-independent), but are reduced by angiotensin II (AT2-receptor), somatostatin and atrial natriuretic peptide. Norepinephrine enhances these currents in some cells but decreases them in others. T-type Ca2+ currents have many known or suggested physiological and pathophysiological roles in growth (protein synthesis, cell differentiation, and proliferation), neuronal firing regulation, some aspects of genetic hypertension, cardiac hypertrophy, cardiac fibrosis, cardiac rhythm (normal and abnormal), and atherosclerosis. Mibefradil is a new Ca2+ antagonist that is effective in hypertension and angina pectoris. Its favorable pharmacological profile and limited side effects appear to be related to selective block of T-type Ca2+ channels: mibefradil reduces vascular resistance and heart rate without negative inotropy or neurohormonal stimulation, and it also has significant antiproliferative actions.  相似文献   

8.
Previous studies have suggested the presence of different types of calcium channels in different regions of stomatogastric neurons. We sought to pharmacologically separate these calcium channel types. We used two different preparations from different regions of stomatogastric neurons to screen a range of selective calcium channel blockers. The two preparations were isolated cell bodies in culture, in which calcium current was measured directly, and isolated neuromuscular junction, in which synaptic transmission was the indirect assay for presynaptic calcium influx. The selective blockers were two different dihydropyridines, omega-Agatoxin IVA, and omega-Conotoxin GVIA. Cultured cell bodies possessed both high-threshold calcium current and calcium-activated outward current, similar to intact neurons. The calcium current had transient and maintained components, but both components had the same voltage dependence of activation and inactivation. Dihydropyridines at >/=10 microM blocked both high-threshold calcium current and calcium-activated outward current. Nanomolar doses of omega-Agatoxin IVA did not block calcium current, but micromolar doses did. omega-Conotoxin GVIA did not block either current. In contrast, at the neuromuscular junction, dihydropyridines reduced the amplitude of postsynaptic potentials by only a modest amount, whereas omega-Agatoxin IVA at doses as low as 64 nM reduced the amplitude of postsynaptic potentials almost entirely. These effects were presynaptic. omega-Conotoxin GVIA did not change the amplitude of postsynaptic potentials. The different pharmacological profiles of the two isolated preparations suggest that there are at least two different types of calcium channel in stomatogastric neurons and that omega-Agatoxin IVA and dihydropridines can be used to pharmacologically distinguish them.  相似文献   

9.
We characterized toxin-insensitive calcium currents expressed by acutely dissociated embryonic dorsal root ganglion neurons. In the presence of 3 microM omega-conotoxin-GVIA, 3 microM nitrendipine and either 500 nM omega-agatoxin-IVA or 500 nM omega-conotoxin-MVIIC to inhibit N-, L- and P/Q-type currents, respectively, all neurons expressed two residual currents: a T-type and another which we referred to as toxin-resistant current. The toxin-resistant current (i) consisted of an inactivating and a sustained components, (ii) had a threshold of activation and a steady-state inactivation comprised between that of the T-type current and that of the other high-voltage-activated currents, (iii) had the same permeability for barium and calcium used as charge carriers, (iv) was highly sensitive to both cadmium and nickel; and (v) was insensitive to 500 microM amiloride which abolished the T-type at this concentration. The properties of the toxin-resistant current are very similar to those of the currents expressed in oocytes following injection of alpha(1E) subunits which we demonstrated to be present in these neurons. Therefore a component of the toxin-resistant current calcium channels in sensory neurons may be closely related to those calcium channels formed by alpha(1E) subunits.  相似文献   

10.
Whole-cell patch-clamp recordings were used to characterize the membrane properties and ion channel complement of floor plate neuroepithelia in embryonic and neonatal rats. The average resting potential was close to -60 mV, the capacitance was approximately 7 pS and the membrane time constant averaged 31 ms, in both neonates and embryos. Two types of K+ current were identified (i) a slowly activating, slowly inactivating current that was present in all cells, and (ii) a rapidly inactivating current that was present in 39% of cells from neonates and 64% of cells from embryos. K+ currents were significantly larger in neonates than embryos. Na+ currents were absent from all neuroepithelial cells examined. In contrast, the majority of floor plate cells exhibited a significant Ca2+ current. Biophysically this current activated at potentials positive to 60 mV and exhibited fast, voltage-dependent, inactivation. The Ca2+ current was equipermeant to Ca2+ and Ba2+, sensitive to 40-120 microM Ni2+ and only slightly inhibited by 100 microM Cd2+. These and other observations indicated this current is mediated by low-voltage-activated (i.e. T-type) Ca2+ channels. The majority of floor plate cells tested also exhibited responses to the neurotransmitter GABA which produced robust inward currents at negative membrane potentials, in chloride-loaded cells. Both the pharmacology and voltage-dependence of the GABA-activated currents indicated they arose from activation of GABA(A) receptors.  相似文献   

11.
Recent genetic and molecular biological analyses have revealed many forms of inherited channelopathies. Homozygous ataxic mice, tottering (tg) and leaner (tgla) mice, have mutations in the P/Q-type Ca2+ channel alpha1A subunit gene. Although their clinical phenotypes, histological changes, and locations of gene mutations are known, it remains unclear what phenotypes the mutant Ca2+ channels manifest, or whether the altered channel properties are the primary consequence of the mutations. To address these questions, we have characterized the electrophysiological properties of Ca2+ channels in cerebellar Purkinje cells, where the P-type is the dominant Ca2+ channel, dissociated from the normal, tg, and tgla mice, and compared them with the properties of the wild-type and mutant alpha1A channels recombinantly expressed with the alpha2 and beta subunits in baby hamster kidney cells. The most striking feature of Ca2+ channel currents of mutant Purkinje cells was a marked reduction in current density, being reduced to approximately 60 and approximately 40% of control in tg and tgla mice, respectively, without changes of cell size. The Ca2+ channel currents in the tg Purkinje cells showed a relative increase in non-inactivating component in voltage-dependent inactivation. Besides the same change, those of the tgla mice showed a more distinct change in voltage dependence of activation and inactivation, being shifted in the depolarizing direction by approximately 10 mV, with a broader voltage dependence of inactivation. In the recombinant expression system, the tg channel with a missense mutation (P601L) and one form of the two possible tgla aberrant splicing products, tgla (short) channel, showed a significant reduction in current density, while the other form of the tgla channels, tgla (long), had a current density comparable to the normal control. On the other hand, the shift in voltage dependence of activation and inactivation was observed only for the tgla (long) channel. Comparison of properties of the native and recombinant mutant channels suggests that single tottering mutations are directly responsible for the neuropathic phenotypes of reduction in current density and deviations in gating behavior, which lead to neuronal death and cerebellar atrophy.  相似文献   

12.
Much of what is known about Ca2+ electrogenesis in neocortical cells has been derived from in vitro studies. Since Ca2+ currents are controlled by various modulators, comparing these findings to in vivo data is essential. Here, we analysed tetrodotoxin (TTX)-resistant, presumably Ca2+-mediated potentials in intracellularly recorded neocortical neurons in vivo. TTX was applied locally to block Na+ channels. Its effectiveness was demonstrated by the elimination of fast spikes and orthodromic responses. In response to depolarizing current pulses bringing the membrane potential beyond approximately -33 mV, 71% of neurons generated high-threshold Ca2+ spikes averaging 17 mV. This is in contrast with in vitro findings, where high-threshold spikes could only be elicited following the blockade of K+ conductances. Consistent with this, neurons dialysed with K+ channel blockers in vivo generated high-threshold spikes that had a lower threshold (approximately -40 mV) and, with intracellular Cs+, a larger amplitude, indicating the presence of K+ currents opposing the activation of Ca2+ channels. Only 15% of cortical cells displayed low-threshold Ca2+ spikes. To compare high-threshold Ca2+ spikes evoked by synaptic stimuli or current injection, another group of cortical neurons was dialysed with QX-314 and Cs+, in the absence of extracellular TTX. Synaptic stimuli applied on a background of membrane depolarization elicited presumed Ca2+ spikes whose amplitude varied in a stepwise fashion. Thus, although there are numerous similarities between in vivo and in vitro data, some significant differences were found, which suggest that the high-voltage activated Ca2+ currents and/or the K+ conductances that oppose them are subjected to different modulatory influences in vivo than in vitro.  相似文献   

13.
Whole-cell patch recording techniques were used to analyze spontaneous electrical activity in cerebellar Purkinje cells acutely isolated from postnatal rats. Spontaneous activity was present in 65% of the cells examined, and it included simple and complex firing patterns which persisted under conditions that eliminated residual or reformed synaptic contacts. Under voltage clamp, both spontaneous and quiescent cells displayed similar voltage-dependent conductances. Inward current was carried by Na+ through tetrodotoxin (TTX)-sensitive channels and by Ca2+ through P-type and T-type Ca channels. P-type current was present in all cells examined. T-type current was found in <50%, and it did not correlate with spontaneous activity. We found no evidence of a transient (A-type) potassium current or hyperpolarization-activated cationic current in either spontaneous or quiescent cells. Spontaneous activity did correlate with a lower activation threshold of the Na current, resulting in substantial overlap of the activation and inactivation curves. TTX reduced the holding current of spontaneous cells clamped between -50 and -30 mV, consistent with the presence of a Na "window" current. We were unable, however, to measure a persistent component of the Na current using voltage steps, a result which may reflect the complex gating properties of Na channels. An Na window current could provide the driving force underlying spontaneous activity, as well as plateau potentials, in Purkinje cells.  相似文献   

14.
Effects of efonidipine, a dihydropyridine phosphonate Ca2+ channel antagonist, on the guinea-pig heart were compared with those of nifedipine. In the sino-atrial node, 1 microM efonidipine produced increase in cycle length accompanied by prolongation of the phase 4 depolarization which was not prominent with 0.1 microM nifedipine. In ventricular myocytes, both efonidipine and nifedipine produced inhibition of the L-type Ca2+ current, nifedipine being tenfold more potent than efonidipine. Efonidipine also inhibited the T-type Ca2+ current at higher concentrations but nifedipine did not. Both Ca2+ channel antagonists had no or only a weak effect on K+ currents. In addition, 40 microM Ni2+, which selectively inhibited the T-type Ca2+ current, had no effect on myocardial Ca2+ transients and contractile force. In conclusion, efonidipine was shown to have inhibitory effects on both L- and T-type Ca2+ currents, which may contribute to its high negative chronotropic potency.  相似文献   

15.
Many neuromodulators inhibit N-type Ca2+ currents via G protein-coupled pathways in acutely isolated superior cervical ganglion (SCG) neurons. Less is known about which neuromodulators affect release of norepinephrine (NE) at varicosities and terminals of these neurons. To address this question, we used carbon fiber amperometry to measure catecholamine secretion evoked by electrical stimulation at presumed sites of high terminal density in cultures of SCG neurons. The pharmacological properties of action potential-evoked NE release paralleled those of N-type Ca2+ channels: Release was completely blocked by Cd2+ or omega-conotoxin GVIA, reduced 50% by 10 microM NE or 62% by 2 microM UK-14,304, an alpha2-adrenergic agonist, and reduced 63% by 10 microM oxotremorine M (Oxo-M), a muscarinic agonist. Consistent with action at M2 or M4 receptor subtypes, Oxo-M could be antagonized by 10 microM muscarinic antagonists methoctramine and tropicamide but not by pirenzepine. After overnight incubation with pertussis toxin, inhibition by UK-14,304 and Oxo-M was much reduced. Other neuromodulators known to inhibit Ca2+ channels in these cells, including adenosine, prostaglandin E2, somatostatin, and secretin, also depressed secretion by 34-44%. In cultures treated with omega-conotoxin GVIA, secretion dependent on L-type Ca2+ channels was evoked with long exposure to high K+ Ringer's solution. This secretion was not sensitive to UK-14,304 or Oxo-M. Evidently, many neuromodulators act on the secretory terminals of SCG neurons, and the depression of NE release at terminals closely parallels the membrane-delimited inhibition of N-type Ca2+ currents in the soma.  相似文献   

16.
1. The functional properties of sodium currents in acutely dissociated adult human, neonatal rat [postnatal day (P) 3 and P10], and mature rat (P21-23) neocortical pyramidal neurons were studied using whole-cell patch-clamp techniques. 2. The voltage dependence of activation and steady-state inactivation of neonatal rat sodium currents was shifted in the positive direction when compared with mature rat sodium currents. In contrast, no difference was detected between the voltage dependence of activation and steady-state inactivation of mature rat and adult human sodium currents. 3. The fast inactivation of rat (neonatal and mature) and human neocortical sodium currents were best fit with three components; a fast decay component, a slow decay component, and a persistent component. The magnitude of the persistent current in neocortical neurons averaged 1-3% of the peak current. Inactivation was faster for sodium currents in neonatal rat neocortical neurons than in mature neurons. No difference was detected in the kinetics of inactivation between mature rat and adult human sodium currents. 4. Saxitoxin (STX) inhibited neuronal sodium currents at nanomolar concentrations in neonatal and mature rat and adult human neocortical neurons. STX-insensitive channels were not detected. 5. STX affinity was also assayed using 3H-STX. A single high-affinity binding site was found in neonatal rat, mature rat, and adult human neocortical tissue. A developmental increase in STX binding site density in the rat neocortex was tightly correlated with the increase in the sodium current density (normalized to cell capacitance). Human neocortical tissue and mature rat neocortical tissue did not differ in STX binding site density or sodium current density. 6. From these electrophysiological and autoradiographic studies we conclude that 1) the increase in the normalized sodium current density and STX binding density with age postnatally reflects an increase in binding sites of sodium channels functionally expressed on neuronal membranes, 2) the functional differences in channel behavior with maturation can explain the higher threshold for excitation in neonatal neocortical neurons and the increase in accommodation or adaptation in firing in the mature neuron, and 3) mature rat neocortical neurons represent a valid model for the study of adult human pyramidal neocortical neurons in terms of Na+ channel expression and function.  相似文献   

17.
The effect of mibefradil, a new nondihydropyridine Ca2+ channel antagonist, was investigated on Y1 cells which exhibited T-and L-type Ca2+ currents. In the great majority of these cells, mibefradil rapidly and selectively blocked T-type Ca2+ current in a dose-dependent manner with a half maximum action at 10-7 M. Furthermore, the specific L-type Ca2+ channel inhibitor, nifedipine, blocked the Ca2+ inward current remaining after the action of mibefradil. Mibefradil does not modify the voltage-dependent characteristics of the current/voltage relationship. However, mibefradil is more effective at depolarized membrane potential.  相似文献   

18.
We have previously defined three types of tegmental pedunculopontine nuclei neurons based on their electrophysiological characteristics: Type I neurons characterized by low-threshold Ca2+ spikes, Type II neurons which displayed a transient outward current (A-current), and Type III neurons having neither low-threshold spikes nor A-current [Kang Y. and Kitai S. T. (1990) Brain Res. 535, 79-95]. In this report, ionic mechanisms underlying repetitive firing of Type I (n=15) and Type II (n=69) neurons were studied in in vitro slice preparations. Type I neurons did not fire rhythmically but their spontaneous firing frequency ranged from 0 to 19.5 spikes/s (mean 9.7 spikes/s). The spontaneous firing of Type II neurons was rhythmic, with a mean frequency of 9.6 spikes/s (range 3.5-16.0 spikes/s). Choline acetyltransferase immunohistochemistry combined with biocytin labeling indicated that none of the Type I neurons were immunopositive to choline acetyltransferase, while 60% (42 of 69) of Type II neurons were immunopositive. There was no apparent difference in the electrophysiological membrane properties of immunopositive and immunonegative Type II neurons. At membrane potentials subthreshold for Na+ spikes (-50 mV), spontaneous membrane oscillations (11.6 Hz) were observed: these underlie the spontaneous repetitive firing of Type I neurons. The subthreshold membrane oscillation was tetrodotoxin sensitive but was not affected by Ca2+-free medium. A similar tetrodotoxin-sensitive subthreshold membrane oscillation (10.5 Hz) was also observed in Type II neurons. However, in Type II neurons a membrane oscillation was also observed at higher membrane potentials (-50 mV). This high-threshold oscillation was insensitive to tetrodotoxin and Na+-free medium, but was eliminated in Ca2+-free conditions. The amplitude and frequency of the high-threshold oscillation was increased upon membrane depolarization. At the most prominent oscillatory level (around -40 mV), the high-threshold oscillation had a mean frequency of 8.8 Hz. The high-threshold Ca2+ spike was triggered from the peak potential (-35 to -30mV) of the high-threshold oscillation. Application of tetraethylammonium chloride (< 5 mM) increased the amplitude of the high-threshold oscillation, while nifedipine greatly attenuated the high-threshold oscillation without changing the shape of the high-threshold Ca2+ spike. Application of Cd2+ eliminated both the high-threshold oscillation and the high-threshold Ca2+ spike, and omega-conotoxin reduced the size of the high-threshold Ca2+ spike without affecting the frequency of the high-threshold oscillation. Nickel did not have any effect on either the high-threshold oscillation or the high-threshold Ca2+ spike. These data suggest an involvement of N- and L-type Ca2+ channels in the generation of the high-threshold oscillation and the high-threshold Ca2+ spike, respectively. The results indicate that a persistent Na+ conductance plays a crucial role in the subthreshold membrane oscillation, which underlies spontaneous repetitive firing in Type I neurons. On the other hand, in addition to a persistent Na+ conductance for subthreshold membrane oscillation, a voltage-dependent Ca2+ conductance with Ca2+-dependent K+ conductance (for the high-threshold oscillation) may be responsible for rhythmic firing of Type II neurons.  相似文献   

19.
Intracellular recordings and organic and inorganic Ca2+ channel blockers were used in a neocortical brain slice preparation to test whether high-voltage-activated (HVA) Ca2+ channels are differentially coupled to Ca2+-dependent afterhyperpolarizations (AHPs) in sensorimotor neocortical pyramidal neurons. For the most part, spike repolarization was not Ca2+ dependent in these cells, although the final phase of repolarization (after the fast AHP) was sensitive to block of N-type current. Between 30 and 60% of the medium afterhyperpolarization (mAHP) and between approximately 80 and 90% of the slow AHP (sAHP) were Ca2+ dependent. Based on the effects of specific organic Ca2+ channel blockers (dihydropyridines, omega-conotoxin GVIA, omega-agatoxin IVA, and omega-conotoxin MVIIC), the sAHP is coupled to N-, P-, and Q-type currents. P-type currents were coupled to the mAHP. L-type current was not involved in the generation of either AHP but (with other HVA currents) contributes to the inward currents that regulate interspike intervals during repetitive firing. These data suggest different functional consequences for modulation of Ca2+ current subtypes.  相似文献   

20.
A number of steroids seem to have anesthetic effects resulting primarily from their ability to potentiate currents gated by gamma-aminobutyric acidA (GABAA) receptor activation. One such compound is (3alpha,5alpha, 17beta)-3-hydroxyandrostane-17-carbonitrile [(+)-ACN]. We were interested in whether carbonitrile substitution at other ring positions might result in other pharmacological consequences. Here we examine effects of (3beta,5alpha, 17beta)-17-hydroxyestrane-3-carbonitrile [(+)-ECN] on GABAA receptors and Ca2+ channels. In contrast to (+)-ACN, (+)-ECN does not potentiate GABAA-receptor activated currents, nor does it directly gate GABAA-receptor mediated currents. However, both steroids produce an enantioselective reduction of T-type current. (+)-ECN blocked T current with an IC50 value of 0.3 microM with a maximal block of 41%. (+)-ACN produced a partial block of T current (44% maximal block) with an IC50 value of 0.4 microM. Block of T current showed mild use- and voltage-dependence. The (-)-ECN enantiomer was about 33 times less potent than (+)-ECN, with an IC50 value of 10 microM and an amount of maximal block comparable to (+)-ECN. (+)-ECN was less effective at blocking high-voltage-activated Ca2+ current in DRG neurons (IC50 value of 9. 3 microM with maximal block of about 27%) and hippocampal neurons. (+)-ECN (10 microM) had minimal effects on voltage-gated sodium and potassium currents in rat chromaffin cells. The results identify a steroid with no effects on GABAA receptors that produces a partial inhibition of T-type Ca2+ current with reasonably high affinity and selectivity. Further study of steroid actions on T currents may lead to even more selective and potent agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号