首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate the initial tensile bond strength of a resin-modified glass ionomer (Photac-Fil) and two polyacid-modified composite resins (Compoglass, Dyract) to primary dentin. A hybrid composite resin (Tetric) and two chemical cured glass ionomers (BaseLine, Hi-Dense) served as controls. Ninety caries-free dentinal discs were ground flat and perfused with Ringer's solution. Dentinal surfaces were conditioned (except for Base Line). From each material, fifteen standardized specimens were attached to the dentin. Light-curing of the respective materials followed (1 min), and adhesion was tested with a universal testing machine 15 min after application. The highest initial bond strength was observed with Tetric (5.17 MPa). Closed test procedure (Kruskal-Wallis) showed significant differences between all materials (P < 0.05), except for Compoglass (1.82 MPa) vs. Dyract (2.35 MPa), and BaseLine (0.37 MPa) vs. Photac-Fil (0.42 MPa). The condensable glass ionomer Hi-Dense revealed a mean tensile bond strength of 0.79 MPa. Adhesion of (polyacid-modified) composite resins is superior to the other tested glass ionomer materials, when applied to perfused primary dentin.  相似文献   

2.
The objective of this study was to determine the in vitro shear bond strength (in megapascals) and location of bond failure with two light-cured glass ionomer resin systems. One system was a hybrid glass ionomer cement with resin (GC Orthodontics, Aslip, Ill), and the other system a glass-filled resin system (Reliance Orthodontic Products, Inc, Itasca, Ill). These systems, Fuji Ortho LC (GC Orthodontics) and Ultra Band Lok (Reliance), respectively, were compared to a light-cured composite resin. Maxillary premolar brackets (n = 200) were bonded to the facial surface of human premolar teeth. The two glass ionomer resin systems were each evaluated by two protocols, one according to the manufacturers' direction plus a variation of their respective technique. The five distinct groups (n = 40) were stored in 37 degreesC distilled water for 30 days and subjected to thermocycling before shear bond strength testing. The findings indicated that large variations existed between the bond strengths of the materials tested. The laboratory shear bond strength of the glass-filled resin glass ionomer cement (Reliance), whether tested in a dry or moist field, was similar to the composite control with all of the previous materials being significantly (P <.01) higher than both the hybrid glass ionomer cement groups (Fuji Ortho LC). However, the hybrid glass ionomer cement with enamel conditioner demonstrated a clinically acceptable mean megapascal value. The Adhesive Remnant Index values ranged from 0.53 to 1.62. The hybrid glass ionomer cement without enamel conditioning recorded the lowest mean adhesive remnant index score and the lowest mean megapascal score. Although both products are glass ionomer resin systems, their individual chemistries vary; this affects their clinical performance. Clinically, it may be suggested that glass ionomers used in a dry field may be beneficial for orthodontic bonding, and that glass ionomer resin systems used in a moist environment need an enamel conditioner.  相似文献   

3.
The pre-cooperative or handicapped child with decay presents a special challenge to the practitioner and may require sedation or general anesthesia. Treatment with an interim restoration may delay treatment until the child is more mature and can accept dental treatment and is a more conservative approach than sedation, extractions or general anesthesia. Glass ionomer materials have been utilized for this application, but little is known about their retention to carious dentin. The purpose of this study was to determine whether the presence of artificial dentin decay will affect the shear bond strength of two light-cured glass ionomer materials. VariGlass and Vitrebond glass ionomer materials were attached to carious and non-carious primary dentin surfaces and bond strengths determined. There were no significant differences in shear bond strengths between the decayed and non-decayed surfaces [p < or = .001]. VariGlass had higher shear bond strengths than Vitrebond only after a pre-treatment with the PAA containing liquid. Pre-treatment with the liquid provided with each light-cured glass ionomer was beneficial in all instances except for Vitrebond on non-decayed surfaces.  相似文献   

4.
OBJECTIVES: Until recently, esthetic inlay restorations in posterior teeth have been limited to cavities surrounded by enamel. Dentin adhesive systems in combination with luting composites and light-cured resin-modified glass ionomer cements offer a possibility for bonding ceramic inlays to cavities when the cervical margin is in dentin. This study was designed to compare in vitro marginal integrity of ceramic inlays bonded to dentin to restorations placed in cavities with margins located entirely in the enamel. METHODS: In the present in vitro study, the sealing abilities of a dentin bonding agent/luting composite combination (Syntac/Dual Cement, Vivadent) and resin-modified glass ionomers (Photac Fil, Photac Bond, ESPE; Dyract, De Trey Dentsply; Fuji II LC, GC Dental Industrial Corp.; and Vitremer, 3M Dental Products) used as luting agents in cavities extending beyond the cemento-enamel junction, were compared to the sealing abilities of a conventional luting composite (Vita Cerec Duo Cement, Vita) in cavities within sound enamel. SEM analysis and dye penetration were performed to evaluate marginal integrity at the cervical cavity margins. RESULTS: The dentin bonding agent/luting composite combination (Syntac/Dual Cement) rendered a marginal seal within the dentin similar to the quality obtained with the conventional luting procedures within sound enamel. When three out of the five resin-modified glass ionomers were used as luting agents (Dyract, Fuji II LC and Vitremer), the results were comparable to those reported for the dentin bonding agents and the conventional method. SIGNIFICANCE: Light-cured resin-modified glass ionomer cements may be considered as an alternative to dentin bonding agents when the cavity margins of ceramic inlay restorations are within the dentin. However, further studies, e.g., wear resistance, must be performed.  相似文献   

5.
This study compared the effects of different dentin surface treatments on the shear bond strengths of three adhesive systems. The adhesive systems included a resin-modified glass ionomer, Fuji II LC, and two dentin bonding systems, One Step and Scotchbond Multi-Purpose Plus. The surface treatments compared for each adhesive system were as follows: 1) the controls, which were conditioned, 2) air abrasion at 120 psi without conditioning, 3) air abrasion at 160 psi without conditioning, 4) air abrasion at 120 psi with conditioning, and 5) air abrasion at 160 psi with conditioning. The KCP 1000 Whisperjet was used for all air-abrasive specimens. Controls for each adhesive material (Fuji II LC, One Step, Scotchbond Multi-Purpose Plus) were bonded using manufacturers' recommendations. Results showed that air abrasion significantly lowered bond strength of the resin-modified glass ionomer, conditioned or nonconditioned (P < 0.01). Air abrasion alone significantly lowered bond strengths of the dentin bonding agent systems (P < 0.01). However, air abrasion plus conditioning of the dentin surface resulted in bond strengths that were similar to the conditioned-only specimens (P < 0.01).  相似文献   

6.
PURPOSE: To evaluate the shear bond strength to the dentin of permanent teeth and failure site of Dentastic hydrophilic dentin bonding agent. MATERIALS AND METHODS: Forty permanent noncarious molar teeth stored in distilled water were obtained. The teeth were cleaned with pumice and a rubber cup. The mesio-buccal surface of the teeth was ground flat with hand pressure with a series of SiC paper ending with the 600 grit to provide a uniform surface on dentin to which the resin composite could be applied. After preparing the tooth surface, the teeth were stored in distilled water for 48 hours. They were then divided at random into four groups of 10 specimens each: Group 1: Dentastic, five coats of primer; Group 2: Dentastic, three coats of primer; Group 3: Dentastic, five coats of primer, light-cured adhesive before resin bonding; Group 4: Dentastic, three coats of primer, light-cured adhesive before resin bonding. All specimens were thermocycled (500x) and sheared in a testing machine. After shear testing, the debonded sites of all samples were examined with a stereomicroscope and a scanning electron microscope. RESULTS: The results in MPa were: Group 1: 22.63 +/- 6.24; Group 2: 23.35 +/- 5.14; Group 3: 23.58 +/- 5.66; Group 4: 27.26 +/- 8.22. ANOVA and Student-Newman-Keuls showed no statistically significant difference between the groups. In all groups, all specimens failed at the dentin (dentin cohesive failure = dentin fracture) or at the resin (resin cohesive failure = resin fracture). This means that the bond strength of the product is stronger than the cohesive strengths of the dentin and the resin.  相似文献   

7.
The effect of sample thickness and dentin depth on bond strength of composite, compomer and resin modified glass ionomer have been investigated. The occlusal surfaces of 84 non carious human third molars were used for bonding. 4 subgroups were tested, superficial dentin with sample thickness 1 and 2 mm and deep dentin with sample thickness 1 and 2 mm respectively SBMP + /Z 100 composite showed 26 +/- 3.2, 22.3 +/- 4.5, 17 +/- 3.2 and 21.8 +/- 4.2 MPa shear bond strength to S. dentin 1 mm, deep dentin 1 and 2 mm and S. dentin 2 mm respectively. Compoglass reported 10.4 +/- 1.57, 9.1 +/- 2.3, 5.0 +/- 0.6 and 9.24 +/- 3.1 MPa while, Vitremer achieved 4.7 +/- 0.49, 3.2 +/- 0.39, 3.0 +/- 0.81 and 3.2 +/- 0.53 MPa. It is concluded that the highest bond strength can be achieved to superficial dentin in thickness or increments not more than 1 mm. And that both dentin depth and sample thickness might influence the quality of the bond to dentin with an effect that varies from one material to another depending upon the mechanism of bond of each material and its chemical composition.  相似文献   

8.
New-generation glass-ionomer cements contain resin to improve their restorative properties. These resin-modified glass-ionomer cements vary considerably in their chemistry, which could result in corresponding variability in their physical and biological properties. This study investigated the cytotoxicity and the fluoride release of two resin-modified glass ionomers, a conventional glass-ionomer cement, and a resin composite. Samples were prepared and extracted in distilled water for 1, 4, and 7 days; eluates were filtered and tested by means of 3T3 mouse fibroblasts. Cytotoxicity (MTT assay) values were low for all materials and extraction times, indicating minimal cytotoxicity of all materials (less than 30% inhibition). Cytotoxicity of one resin-modified glass ionomer was significantly higher than for the other materials (p < 0.001). One resin-modified glass ionomer and the conventional glass-ionomer cement released significantly more fluoride at each time interval (p < 0.001) than the other resin-modified glass-ionomer cement and the resin composite. Fluoride release and cytotoxicity were correlated (r2 = 0.60; p < 0.001), although the fluoride release does not account for the cytotoxicity observed. Cytotoxicity and fluoride release suggest that one hybrid behaved more like a conventional glass ionomer, and the other like a resin composite. These differences may have implications for material selection in specific clinical situations.  相似文献   

9.
PURPOSE: To investigate the marginal adaptation of resin-modified glass ionomer cements in dentin cavities placed with or without additional application of resin bonding systems. MATERIALS AND METHODS: Three resin-modified materials (Fuji II LC, Photac-Fil, Vitremer), one compomer (Dyract) and as reference an adhesively bonded resin composite system (Gluma CPS-Pekafill) were used. Flat peripheral dentin surfaces on human molar teeth were produced by wet grinding on SiC paper. Cylindrical cavities, 3.5 mm wide, were prepared in these dentin areas and restored with the individual materials. Sixty cavities were pretreated and restored as requested by the respective manufacturers. Following water storage of the specimens for 15 minutes or 24 hours, excess was gently removed by wet grinding for microscopic inspection of the marginal area. Additionally, in 30 cavities an experimental one-component adhesive resin system, a proprietary dimethacrylate and HEMA mixture dissolved in acetone, was combined with each of the restoratives for evaluation after 15-minutes water storage. Finally, in six cavities each, Dyract was combined with Prime and Bond 2.0, and Vitremer with Scotchbond Multi-Purpose Plus for assessment after 15 minutes. Maximum marginal gap widths (MGW) were measured. One-way ANOVA by ranks (Kruskal-Wallis-Test) followed by Wilcoxon's Two-Sample test were used to study the statistical difference of MGW among the treatment groups at a rejection level P = 0.05. RESULTS: Neither the conventionally placed material systems nor the restorations in combination with adhesives showed consistently gap-free margins after 15-minute water storage. After 24-hour storage with Vitremer 4 of the 6 restorations were gap-free, whereas with all other materials only perfect margins were registered. There was, however, no significant difference between the groups. Application of the experimental and/or the specific resin bonding agents had no effect on early MGW except for the Photac-Fil group, which was significantly reduced.  相似文献   

10.
PURPOSE: To evaluate a dental adhesive system that uses a single conditioning/primer agent. MATERIALS AND METHODS: Twenty-five flat enamel and dentin bonding sites were prepared to 600 grit on human molar teeth. The Clearfil Liner Bond 2 adhesive system was used to bond Clearfil AP-X composite to both enamel and dentin. After 24 hours of water storage, shear bond strengths were determined using an Instron testing machine. Fifty V-shaped cavity preparations were prepared in human molar teeth with an enamel and cementum margin. Composite restorations were placed using the new adhesive system. The teeth were stored for 24 hours, thermocycled, stained with AgNO3 , sectioned and examined for microleakage. SEM examinations were also completed to evaluate the effects of the treatment steps on enamel and dentin surfaces. RESULTS: Mean shear bond strengths for the experimental adhesive to enamel and dentin were 28.2 +/- 4.9 and 19.4 +/- 3.1 MPa. A t-test revealed that the enamel bond strength was significantly greater (P<0.05) than the dentin strength. No marginal leakage was observed from the enamel margins of the restorations. Three restorations showed minimal leakage from the cementum margins. SEM examinations showed resin penetration into both the conditioned enamel and dentin surfaces. The adhesive system produced high bond strengths to both enamel and dentin, exhibited very minimal microleakage and was easy to use.  相似文献   

11.
Orthodontic bands often fail clinically at the band-cement interface. Hybrid ionomer and resin cements and a glass ionomer control were bonded to photo-etched and standard band materials, both of which were tested in as-received and air-abraded conditions. Cements were placed in a 3 mm diameter mold at the bonding interface and bonded to 6 x 6 mm stainless steel band specimens mounted to acrylic blocks. Specimens were stored in water for 24 hours at 37 degreesC and debonded in tension on a testing machine at 0.05 cm/minutes. Bond strengths (MPa) were calculated and data were analyzed by analysis of variance. Bond strengths to as-received bands were less than 3.4 MPa for cements tested, whereas bond strengths to air-abraded bands ranged from 7.1 to 17.7 MPa, except for the glass ionomer control. Air abrasion of band materials provides highly increased bond strength of hybrid ionomer and resin cements.  相似文献   

12.
The present study investigates the effect of storage in water on hygroscopic expansion and shear bond strength to dentin at periods up to 1 week, of the resin-modified glass ionomers for base/liner, and to analyze the effect on the marginal gaps in dentin cavities. For polishing after storage in water for 1 day, the material indicated significantly smaller marginal gaps both in dentin and in Teflon cavities than in those immediately after light-activation. For the results of after storage in water for 1 day, the material indicated significantly greater bond strength than material immediately after light-activation. The improvement of marginal sealability in dentin cavities may be performed not only by hygroscopic expansion during storage in water but also by greater bond strength after the setting reaction which continues to advance during storage in water.  相似文献   

13.
This in vitro study evaluated the effects of etchant type, surface moisture, and resin composite type on the shear bond strength of dentin adhesives. Three adhesives which bond to etched dentin were used in the study: All-Bond 2, Amalgambond, and Clearfil Photo Bond. Occlusal enamel was removed from 200 human molars to expose dentin. The dentin surfaces were etched, treated with a dentin adhesive system, and bonded with resin composite. After thermocycling and storage, the composite columns were fractured from dentin using an Instron machine. Bond strengths were calculated and subjected to a statistical analysis. Etchant type, surface moisture, and resin composite type all had significant effects on dentin bond strengths. Overall, the highest bond strengths were obtained with 10/3 etchant, moist dentin, and hybrid composite. The highest bond strengths for All-Bond 2 and Amalgambond were obtained by using the manufacturer's recommended etchant, moist dentin, and a hybrid composite. The mean bond strengths for All-Bond and Amalgambond under these conditions were 22.5 and 19.0 MPa, respectively. Clearfil Photo Bond had significantly lower bond strengths, but was relatively unaffected by changes in experimental conditions.  相似文献   

14.
PURPOSE: To evaluate the 2-year clinical performance of two polyacid-modified resin composites and two resin-modified glass ionomers in Class V carious cavities. MATERIALS AND METHODS: A total of 120 Class V cavities were selected and 30 cavities were restored with one of two resin-modified glass ionomer materials (Fuji II LC Improved and Vitremer) and two polyacid-modified resin composites (Dyract and Compoglass) in Class V carious cavities after 2 years. The restorations were clinically evaluated after 1 and 2 years using the USPHS criteria. RESULTS: One-year findings revealed a significant difference in color match between Vitremer and other materials (P < 0.05) and no significant difference was found for the other criteria. Two-year results indicated a significant difference between resin-modified glass ionomers and polyacid-modified resin composite materials. The difference between Compoglass and Dyract was not statistically significant whereas the difference between Vitremer and Fuji II LC was statistically significant. Caries was not recorded at any evaluation period.  相似文献   

15.
OBJECTIVE: The purpose of this study was to evaluate a hydroxylapatite-based material and calcium sulfate when each was used under a resin-modified glass ionomer cement to repair furcation perforations. STUDY DESIGN: Perforations of pulp chamber floors were made in 72 teeth of 9 dogs. Perforations were divided into 3 equal-sized groups and repaired with resin-modified glass ionomer either alone or over an artificial floor. The artificial floor was either a hydroxylapatite-based material or calcium sulfate. Three dogs were killed at each of 3 intervals (1, 3, and 6 months). The tissue response to the tested materials was evaluated clinically, radiographically, and histologically. RESULTS: The hydroxylapatite-based material showed the highest radiographic success; this was followed by calcium sulfate and glass ionomer. From histologic evaluation, the average success rate was found to be 67% for calcium sulfate, 62% for the hydroxylapatite-based material, and 59% for glass ionomer. However, there was no statistical significant difference with the resin-modified glass ionomer when it was used alone and when it was used over a barrier. There was also no significant difference between the hydroxylapatite-based material and the calcium sulfate when they were used as artificial floors. CONCLUSION: The use of an artificial floor may not be necessary when flowable resin-modified glass ionomer cements are used.  相似文献   

16.
PURPOSE: To examine the effect of mixing techniques (hand-mixing vs. trituration) on fluoride release from chemically-cured (Fuji II) and resin-modified (Fuji II LC) glass ionomer products. MATERIALS AND METHODS: Fluoride measurements were determined and comparisons made between hand-mixed-type materials that were both hand-mixed (60 seconds) and triturated (10 seconds). Hand-mixed specimens were made using the manufacturer's recommended powder/liquid ratio. Triturated specimens of the same material were made using the same powder/liquid ratio. Disk specimens (8.5 mm diameter, 2 mm thickness; n = 6) were stored in deionized water for 23 hours to obtain Day 1 solutions. Solutions were also obtained at 2, 3, 4, 5, 6, 7, 14, 21, and 28 days after fabrication and were changed 24 hours before fluoride concentration was determined using a fluoride ion selective electrode. Daily rates of fluoride release and 28-day cumulative fluoride totals were calculated. Cumulative data were analyzed by two-way ANOVA and Scheffé's test (alpha = 0.05). Daily results were analyzed by the Mann-Whitney U-test. RESULTS: A significant difference was observed between materials (P < 0.001). Depending on the kind of material used, the method of manipulation affected the fluoride release. Data analysis revealed that: (1) Fuji II LC released significantly more fluoride than Fuji II for both triturated (P = 0.005) and hand-mixed (P < 0.005); (2) the triturated Fuji II released significantly more fluoride than the hand-mixed (P = 0.02); and (3) the hand-mixed Fuji II LC released more fluoride than the triturated, but was not statistically significant (P = 0.16).  相似文献   

17.
This study evaluated the sealing properties of AP.H/Prisma Universal Bond 3, Z100/Scotchbond MultiPurpose, AP.H/Imperva Bond, Charisma/Denthesive, Bisfil M/All-Bond 2, resin composite/dentin adhesive systems and Fuji II LC light-cured glass ionomer, in Class V preparations following 6 months of storage in a 37 degrees C water bath. The Class V preparations extended just beyond the cemento-enamel junction of extracted human molars. The restored teeth were placed in 37 degrees C water for 24 hours and then thermally stressed for 100 temperature cycles. Half of the specimens were tested for microleakage at this time. The other specimens were returned to water storage and thermally stressed every 30 days during the following 6 months and then assessed for microleakage by dye penetration. AP.H/Imperva Bond, Z100/Scotchbond Multi-Purpose and Fuji II LC were not affected by the storage, while AP.H/Prisma Universal Bond 3, Charisma/Denthesive and Bisfil M/All-Bond 2 revealed some increase in microleakage at the dentin/cememtum margin.  相似文献   

18.
The purpose of this study was to evaluate the resin-dentin interfacial morphology and shear bond strength of several new and experimental dentin bonding systems classified as single-bottle/total etch, multi-step/total etch, and self-etching. Class 1 and 5 cavities were prepared from freshly extracted permanent molars and restored with composite resin. Each bonded sample was cross sectioned and one-half was completely demineralized and deproteinized, while the other half was polished along the cut surface to permit measurement of the thickness of resin-infiltrated dentin layer (RIDL) within intertubular dentin (iRIDL) and around the peritubular walls (pRIDL) of resin tags by SEM. Shear bond strength was measured for all the systems 2 minutes after photocuring. SEM showed iRIDL and resin tags of different morphology depending on material and dentin location. The iRIDL was thinner in superficial dentin and thicker in deep dentin. Peritubular RIDL (pRIDL) was thinner than intertubular RIDL. Bond strength measurements varied from 12 to 21 MPa, depending on the materials used. Self-etching primer systems exhibited the highest bond strength, although one of the one-step/total etch systems also yielded very high values. The contribution of pRIDL to adhesion onto superficial dentin is limited by the small number of tubules. Single-component bonding agents produced SEM morphology and bond strengths similar to those of multi-step systems. Self-etching systems, despite their limited RIDL thickness, produced the highest immediate bond strengths. Bond strength did not correlate well with the thickness and morphology of RIDL.  相似文献   

19.
PURPOSES: To evaluate (1) the shear bond strength to the dentin of primary teeth and failure site of hydrophilic dentin bonding agents, (2) the interfacial micromorphology of these adhesives on primary teeth. MATERIALS AND METHODS: Seventy-six primary noncarious molars stored in distilled water were obtained. The teeth were cleaned with pumice and a rubber cup. The mesio-buccal surface of the teeth was ground flat with hand pressure with a series of SiC paper ending with the 600 grit to provide a uniform surface on superficial dentin to which the adhesives and resin composite could be applied. After preparing the dentin surface, the teeth were stored in distilled water for 48 hours. They were then rinsed and dried with compressed air and divided at random into four groups of 16 specimens each: Group 1: Dentastic; Group 2: One-Step; Group 3: Prime & Bond 2.0; Group 4: Compoglass SCA. Z100 resin was used in all groups. All specimens were thermocycled (500x) and sheared in an Instron machine. After shear testing, the debonding sites of all samples were examined with a stereomicroscope and selected samples were also examined with the scanning electron microscope. Three additional samples per group were used to evaluate the resin adaptation to dentin. RESULTS: The results in MPa were: Dentastic 19.62 (4.67); One-Step 11.24 (3.67), Prime & Bond 22.38 (6.47), Compoglass SCA 18.88 (4.04). ANOVA (P < 0.0001) revealed that there was a significant difference between the groups. The Student-Newman-Keuls test (P < 0.05) showed no statistically significant difference between Dentastic, Prime & Bond and Compoglass SCA. However, these three groups were statistically significantly higher than One Step. In the Dentastic group, 14 of 16 samples revealed resin cohesive failure (resin fracture) while two of 16 displayed dentin cohesive failure (dentin fracture). In the One Step group, 15 samples failed at the resin and one sample showed dentin cohesive failure. In the Prime & Bond group, 12 specimens revealed resin cohesive failure while four displayed dentin cohesive failure. In the Compoglass SCA group, 13 samples had resin cohesive failures while three had dentin cohesive failures. All samples revealed an intimate adaptation to the dentin displaying resin tag formation.  相似文献   

20.
PURPOSE: To evaluate in vitro the cervical gap formation in composite restorations in which an increment of autopolymerizing composite was interposed between the light-cured filling material and the dentin bonding system. Two different self-cured materials and two different adhesives were used and compared. MATERIALS AND METHODS: In 40 Class II cavity preparations with the gingival margins in dentin or cementum, an increment of either of two different autopolymerizing composites, Palfique or Bisfil 2B, was interposed between the light-cured filling material (Palfique Estelite) and either of two different dentin bonding systems, All-Bond and Superbond D (20 restorations each). The specimens were immersed in toluidine blue dye. A section was taken from each specimen and examined under an optical microscope. The extent of dye penetration was measured. The specimens were then stored in water for 1-4 months and replicas of the sections were examined by SEM. RESULTS: Good marginal adaptation was observed for All-Bond/Bisfil 2B in all the restorations. All-Bond/Palfique showed good adaptation in 7 out of 10 cases, the failures occurring between bonding agent and composite. Superbond D/Palfique and Superbond D/Bisfil 2B showed marginal gap formation in 8 out of 10 and in all the restorations respectively. In the latter, four gaps occurred between bonding agent and dentin. As a consequence, a very significant difference (P<0.001) was found between All-Bond and Superbond treatments; no significant difference was found between Bisfil 2B and Palfique in each group treated with either All-Bond or Superbond. After 1-4 months storage in water, hygroscopic expansion of the restorative materials reduced the total number of gaps and the efficacy of the treatments was no more significantly different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号