首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
研究了使用草酸二氟硼酸锂(LiBC2O4F2)电解液的锂离子电池的电化学性能.循环伏安曲线和交流阻抗谱表明:电池的可逆性优良,电荷转移电阻较低.充放电测试表明:电池的首次充放电比容量较高,循环性能优良,在25 ℃时,0.2 C首次充、放电比容量分别为135.9 mAh/g和125.4 mAh/g;在25 ℃和60 ℃时,第50次0.5 C循环的容量保持率分别为98.7%和92.5%.  相似文献   

2.
采用商品化的LiMn2O4和石墨作为正负极材料制作锰酸锂动力电池,并利用XRD、SEM等分析手段表征了LiMn2O4原料。研究了MgO,LiF和Li2CO3添加剂对电池性能的影响。研究发现,添加2%wt的LiF能够有效地提高LiMn2O4的放电比容量和循环性能,放电比容量最高达到107.5mAh/g,100次循环后电池容量保持率为最高为93%,而纯LiMn2O4的放电比容量只有105 mAh/g,100次循环容量保持率为91.1%。研究认为,添加剂能够有效地降低电解液中的HF的含量,并且能够增强正负极表面SEI膜的致密性,减少正极材料和电解液的接触面积,进而改善了锰酸锂电池的电化学性能。  相似文献   

3.
何劲作  闫啸  张丽娟 《电池》2024,(2):165-169
正极电解质相界面(CEI)膜会影响锂离子电池的高温性能。商用电解液在高温下的热稳定性差,形成的CEI膜不够稳定,易导致电池失效。以热稳定性及成膜性能良好的双三氟磺酰亚胺锂(LiTFSI)和二氟草酸硼酸锂(LiODFB)为锂盐,EC+EMC(体积比3∶7)为溶剂,构建电解液体系,考察制备的LiCoO2/Li半电池的电化学性能。在70℃下,LiCoO2/Li半电池在0.5 mol/L LiTFSI+0.5 mol/L LiODFB基电解液体系下,以1.0 C在2.7~4.2 V循环,首次放电比容量为131.2 mAh/g,循环100次的容量保持率为90.8%。这得益于电解液体系生成了均匀、致密且具有良好离子电导率的CEI膜。  相似文献   

4.
锂离子电池高倍率放电性能的影响因素   总被引:2,自引:2,他引:0  
研究了18650型锂离子电池高倍率放电性能的影响因素.使用LiMn2O4/LiCoO2或LiMn2O4/LiNi1/3Co1/3Mn1/3O2的电池的放电容量保持率比使用LiFePO4的电池高;电解液电导率对电池的高倍率放电性能有明显的影响.采用D50=9μm的LiNi1/3co1/3Mn1/3O2、添加导电锂盐的电解液的电池,在25 C倍率下的放电电压平缓,放电容量为1246 mAh,循环性能良好.  相似文献   

5.
研究四氟硼酸锂(LiBF_4)和二氟草酸硼酸锂(LiODFB)混合锂盐电解液用于磷酸铁锂(LiFePO4)锂离子电池时的低温-20℃性能。探讨电导率与电解液组成、温度的关系;通过循环伏安、充放电、倍率性能及电化学阻抗谱(EIS)测试,比较不同电解液体系中LiFePO_4正极在25℃和-20℃的放电比容量、循环稳定性等。在25℃和-20℃下于2.5~4.2 V充放电,LiFePO_4电极在LiBF_4/Li ODFB基电解液体系中的电化学性能较好:在25℃时以1.0 C倍率充放电,混合盐基电解液电池的首次放电比容量为140 m Ah/g,优于六氟磷酸锂(Li PF6)基电解液的130.5 m Ah/g;-20℃时0.1 C倍率下,首次放电比容量为101.7 m Ah/g,100次循环的容量保持率为86.62%,优于Li PF6基电解液的97.4 m Ah/g和60.57%。  相似文献   

6.
对氟化碳电池电解液的配制及使用进行了研究。使用两种醚类溶剂DME、THF和两种砜类溶剂TMS、DMSO等,锂盐为LiBF_4、LiClO_4、Li N(SO_2CF_3)_2等,组成单溶剂电解液,进行电化学阻抗、线性扫描及电性能测试,其中LiTFSI-THF电解液所制备的电池以0.1 C放电,比容量为856.9 mAh/g,接近理论容量;LiClO_4-DMSO电解液以0.1 C放电,放电平台达到2.7 V。以VC、FEC作为添加剂使用,提高了电池的放电容量。  相似文献   

7.
以Fe2O3为铁源、腐殖酸为还原剂和碳源,用一步固相法合成LiFePO4/C复合材料.在有机电解液中以1.0C充放电,合成的LiFePO4/C的首次放电比容量为127.1 mAh/g,第100次循环的放电比容量为118.7 mAh/g;在Li2SO4电解液中,LiFePO4/C能可逆地嵌脱锂,以3.0 G充放电,室温和-5℃时的首次放电比容量分别为119.5 mAh/g和57.5 mAh/g.  相似文献   

8.
胡传跃  李新海  郭军 《电源技术》2006,30(10):837-841
研究了固体添加剂Li2CO3用于锂离子电池"-丁内酯基(GBL)电解液时的电化学行为。发现Li2CO3提高了石墨电极的首次放电容量和循环性能。采用1mol/LLiPF6/(EC DMC GBL)(体积比为4∶4∶3) 0.05mol/LLi2CO3电解液的软包装锂离子电池,首次放电比容量为142.6mAh/g、1C循环200次后的比容量保持率为88.6%。以交流阻抗法和傅里叶变换红外光谱(FT-IR)方法分析了Li2CO3对SEI膜的影响,结果表明,Li2CO3添加剂促进了SEI膜的形成,降低了SEI膜的阻抗,减少了GBL基电解液的分解,增大了SEI膜中Li2CO3的含量。  相似文献   

9.
吕正中  周震涛 《电源技术》2004,28(5):270-272
为了考察LiMn2O4锂离子蓄电池正极材料在充放电过程中的化学变化,采用高温固相法制备了尖晶石型LiMn2O4,并对其电化学性能进行了表征,利用X射线衍射分析的结果,结合Li-Mn-O相图,对LiMn2O4在多次循环充放电所发生的相变进行了研究。实验结果表明,其首次放电比容量为123 mAh/g,循环200次后的放电比容量为107 mAh/g;LiMn2O4发生歧化反应,以及在LiMn2O4微粒表面形成的Li2Mn2O4进一步转化成无电化学活性的Li2MnO3,这两种相变都会导致电池的不可逆容量损失。  相似文献   

10.
洪良仕  李运姣  习小明 《电池》2005,35(6):450-452
以Li2CO3和Mn3O4为原料,采用机械化学法合成了尖晶石LiMn2O4.考察了热处理温度和时间对LiMn2O4电化学性能的影响.720℃下热处理2 h、6 h和10h所得样品的首次放电比容量分别为124.5 mAh/g、124.6 mAh/g和126.3 mAh/g.在400℃、600℃、720℃和800℃下热处理6 h后得到的样品的首次放电比容量分别为120.6 mAh/g、124.4 mAh/g、124.6 mAh/g和128.6 mAh/g,经过10次循环后,比容量下降的幅度分别为13.8%、11.5%、9.5%和6.5%.适宜的热处理制度为:800℃热处理6 h.  相似文献   

11.
采用柠檬酸络合法合成了尖晶石型锂锰氧化物(Li1.01Mn2O4)和钴、铬、氟复合掺杂锂锰氧化物(Li1.01CoxCr0.2-xMn1.8-O3.95F0.05)。XRD分析表明所合成的样品仍为尖晶石结构。研究发现:在循环使用过程中,尖晶石锂锰氧化物容量的损失在反应第一步主要是由于Jahn-Teller效应,而在反应第二步则主要是由于锂和锰晶格位置的错动;钴、铬、氟复合掺杂可有效改善锂锰氧化物的循环性能,对其高温性能也有一定的改善。  相似文献   

12.
陈猛  蔡智  敖文乐  刘瑶 《电池工业》2009,14(4):227-230
采用高温固相法合成了正交LiMnO2及其掺杂改性的LiMnO2 and Li1.08MnO1.92F0.08和Li1.08Al0.0625Mn0.9375O1.92F0.08正极材料。通过X射线衍射对材料的晶体结构进行了分析,通过扫描电镜对材料的表面形态进行了分析,通过恒电流充放电和电化学阻抗测试技术对材料的电化学性能进行了测试。实验结果表明,LiMnO2 and Li1.08MnO1.92F0.08、Li1.08Al0.0625Mn0.9375O1.92F0.08的结构比未掺杂的LiMnO2表现出较少的阳离子混排和跺堆层错,其中材料Li1.08Al0.0625Mn0.9375O1.92F0.08的电化学性能最佳,该材料以0.2C的倍率循环充放电,最大放电比容量可达129.28mAh/g,50次循环后放电比容量仍保持在124.26mAh/g以上,容量保持率为96.12%。  相似文献   

13.
以H3PO4、Fe2O3、LiOH·H2O和葡萄糖为原料,利用H2还原制备了LiFePO4/C复合材料,并进行了XRD、SEM、碳含量和振实密度分析,以及电化学性能测试。制备的LiFePO4/C复合材料的含碳量为1.9%,振实密度为1.4g/cm3;0.1C、1.0C首次放电比容量分别为148.4mAh/g和128.4mAh/g,1.0C循环60次的容量保持率为98.8%。通过机理研究,发现了反应的中间产物Li3PO4、Li3Fe2(PO4)3、Fe2Fe(P2O7)2和LiFeP2O7。  相似文献   

14.
采用溶胶凝胶法,以有机物钛酸四丁酯和醋酸锂为原料,草酸为螯合剂,PEG为碳源制备出Li_4Ti_5O_(12)/C复合材料前驱体,在N_2气氛中850℃高温煅烧制备出Li_4Ti_5O_(12)/C复合材料。通过XRD、SEM分析表明,850℃下煅烧10 h合成结晶性良好的亚微米级纯相尖晶石钛酸锂。电化学性能测试结果表明,Li_4Ti_5O_(12)/C在0.2C,1C,2C倍率下的首次放电比容量分别为173.3、168.7、166.3 mAh/g。与Li_4Ti_5O_(12)相比,显示出良好的倍率性。  相似文献   

15.
以钛酸锂为负极、锰酸锂为正极制作了软包装锂离子电池,分析了钛酸锂/锰酸锂电池在充放电过程中产生的气体成分,研究了影响钛酸锂电池胀气的因素,如钛酸锂材料、电解质溶液酸度、电解质溶液添加剂等。进一步开发出性能优越的35 Ah软包装钛酸锂/锰酸锂电池,该电池常温1 C循环3 000次后容量保持87%,高温55℃、1 C、1 300次循环后仍能保持85%的初始容量,并具有良好的倍率性能和搁置性能。  相似文献   

16.
锂离子蓄电池材料LiMn2O4的循环性能和结构关系   总被引:2,自引:0,他引:2  
LiMn2O4的XRD衍射谱中,(311)、(400)衍射峰强度比变化和Li离子、Mn离子在结构中位置变化有关,而Li和Mn的位置直接影响锂离子蓄电池的充放电循环性能.所以从(311)、(400)衍射峰的强度变化可以推知以LiMn2O4为正极的锂离子蓄电池循环性能变化.  相似文献   

17.
LixMn2O4的组成对结构和性能的影响   总被引:1,自引:0,他引:1  
陈彦彬  刘庆国 《电源技术》2002,26(4):275-277
采用固相反应法合成了不同组成的锂离子蓄电池正极材料LixMn2 O4,并考察了材料组成对其结构和性能的影响。结果表明 ,随着nLi/nMn比值的提高 ,材料的晶格常数逐渐减小 ,电化学比容量随之降低 ,循环性能明显趋好 ;配比为x =1.0 5的材料倍率特性最好 ,其比容量和平均放电电位随放电倍率提高而降低幅度最小 ;x >1.0 5时的材料即使在 1C下也具有良好的循环性能  相似文献   

18.
徐融冰  鲁道荣 《电池工业》2006,11(6):388-391,400
尖晶石LiMn2O4是很有发展前途的锂离子电池正极材料,但它在循环过程中存在着容量衰减的问题,其中Jahn-Teller效应是锂离子电池正极材料尖晶石LiMn2O4在应用中容量衰减的难点。对溶胶凝胶法制备的尖晶石LiMn2O4,及其阳离子掺杂LiMxMn2-xO4(M=Li,Ni-Co)正极材料进行了表面改性(包覆MgO),利用x射线衍射、晶格参数和|Mn4 |/|Mn3 |比值等参数研究了尖晶石LiMn2O4的Jahn-Teller效应。结果表明:表面改性后的正极材料Li1.05Mn1.9Co0.05Ni0.05O4循环性能明显增强,Jahn-Teller效应得到了有效抑制。  相似文献   

19.
陈亮  瞿毅  赵鹏飞  唐新村 《电池》2011,41(2):59-61
用废旧锂离子电池回收的钴,通过草酸铵[(NH4)2C2O4]沉淀-固相法制备钴酸锂(LiCoO2),考察了(NH2)2C2O4用量、沉淀反应温度及时间等的影响,最优条件为:n(C2O42-):n(Co2+)=1.15:1.00,在40~50℃下沉淀10 min,相应的钴回收率为99.2%.将CoC2O4和过量5%的Li...  相似文献   

20.
采用共沉淀法得到前驱体M(OH)2(M=Ni、Co、Mn)后与氢氧化锂(LiOH·H2O)进行高温固相反应得到锂离子电池正极材料Li[Li0.20Ni0.128Co0.136Mn0.536]O2,并对该材料进行Al2O3包覆.通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试手段对产物的结构、形貌以...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号