首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation and hydrolysis of a cytosine residue can lead to the formation of 5-hydroxyuracil in DNA. The biological consequences of this modification are not fully understood. To facilitate biochemical and biophysical studies aimed at elucidating the effects of this modification in DNA, we have developed a solid-phase synthetic method for the placement of 5-hydroxyuracil residues at defined sites in oligodeoxynucleotides. This method is based upon the enhanced acidity of the 5-hydroxyl proton which allows selective aqueous acetylation. Under standard aqueous ammonia deprotection conditions, however, we observed that 5-hydroxyuracil residues are lost substantially from synthetic oligonucleotides. Substitution of aqueous ammonia with methanolic potassium carbonate and the use of phosphoramidite derivatives with alternatively protected amino groups allow synthesis of oligonucleotides containing 5-hydroxyuracil and all normal bases in high yield. The composition of the oligodeoxynucleotides prepared by this method has been verified by enzymatic digestion followed by high-performance liquid chromatography (HPLC) analysis as well as acid hydrolysis followed by GC/MS analysis. The location of the 5-hydroxyuracil residue is demonstrated by selective permanganate oxidation of the 5-hydroxyuracil residue followed by beta-elimination. We have also probed a synthetic oligonucleotide containing a unique 5-hydroxyuracil residue with uracil DNA N-glycosylase, previously reported to remove this lesion from DNA.  相似文献   

2.
3.
To develop non-prodrugs of taxoids with satisfactory stability in vivo, high water-solubility, and potent antitumor activity, we prepared several 10-O-sec-aminoethyl docetaxel analogs (3) and evaluated their cytotoxicity against mouse leukemia and human tumor cell lines, microtubule disassembly-inhibitory activity, and water-solubility. These analogs were synthesized from the 10-O-allyl baccatin derivatives (5a-c) using the beta-lactam synthon method. Among these analogs, the 10-O-(2-morpholinoethyl) (18, 21) and 10-O-(2-thiomorpholinoethyl) (19, 24) analogs exhibited cytotoxicity comparable or superior to that of docetaxel (2). In addition, the methanesulfonic acid salt (18a) had a high water-solubility.  相似文献   

4.
Tumor necrosis factor-alpha (TNF-alpha) is a highly pleiotropic cytokine produced mainly by activated macrophages. This cytokine has been found to mediate the growth of certain tumors, the replication of HIV-1, septic shock, cachexia, graft-versus-host disease, and autoimmune diseases. The binding of TNF-alpha to the p55 tumor necrosis factor receptor type I (TNFRI) is considered one of the initial steps responsible for the multiple physiologic effects mediated by TNF-alpha. The role of TNF-alpha as an inflammatory mediator through TNFRI makes both of these genes attractive targets for intervention in both acute and chronic inflammatory diseases. We have designed antisense oligodeoxynucleotides (ODNs) containing chemically modified purine and pyrimidine bases that specifically inhibit TNFRI expression and functions. These ODNs were designed to hybridize to the 3'-polyadenylation signal region of the TNFRI gene. In cell-based assays, gene-specific antisense inhibition occurred in a dose-dependent fashion at submicromolar concentrations in the presence of cellular uptake enhancing agents. Within ODN sets with a common pattern of stabilizing backbone substitution, the inhibition of the gene expression is found to be correlated with the affinity of the ODNs for their cognate mRNA target sites, providing direct evidence for an antisense mechanism of action. In addition, events triggered by the binding of TNF-alpha to TNFRI, such as the production of IL-6 and IL-8, were significantly reduced by treatment of cells with the anti-TNFRI ODN. Therefore, antisense ODNs can be used to control biologic processes mediated by TNF-alpha and may be useful as therapeutic agents to treat conditions resulting from overproduction of TNF-alpha.  相似文献   

5.
A method for making the rosette-formation test in the monolayer lymphoid cells that adhered to the glass surface is described. After the rosette-formation test is completed-the test red cells that did not adhere to the surface are removed by washing. The method suggested possesses a higher sensitivity and provides more accurate results.  相似文献   

6.
Arylamine-hemoglobin adducts are a valuable dosimeter for assessing arylamine exposures and carcinogenic risk. The effects of age, sex, time-course, dose, and acetylator genotype on levels of 2-aminofluorene-hemoglobin adducts were investigated in homozygous rapid (Bio. 82.73/H-Patr) and slow (Bio. 82.73/H-Pats) acetylator hamsters congenic at the polymorphic (NAT2) acetylator locus. Following administration of a single ip dose of [3H]2-aminofluorene, peak 2-aminofluorene-hemoglobin adduct levels were achieved at 12-18 hr and retained a plateau up to 72 hr postinjection in both rapid and slow acetylator congenic hamsters. 2-Aminofluorene-hemoglobin adduct levels did not differ significantly between young (5-6 weeks) and old (32-49 weeks) hamsters or between male and female hamsters within either acetylator genotype. 2-Aminofluorene-hemoglobin adduct levels increased in a dose-dependent manner (r = 0.95, p = 0.0001) and were consistently higher in slow versus rapid acetylator congenic hamsters in studies of both time-course and dose-effect. The magnitude of the acetylator genotype-dependent difference was a function of dose; 2-aminofluorene-hemoglobin adduct levels were 1.5-fold higher in slow acetylator congenic hamsters following a 60 mg/kg 2-aminofluorene dose (p = 0.0013) but 2-fold higher following a 100 mg/kg 2-aminofluorene dose (p < 0.0001). These results show a specific and significant role for NAT2 acetylator genotype in formation of arylamine-hemoglobin adducts, which may reflect the relationship between acetylator genotype and the incidence of different cancers from arylamine exposures.  相似文献   

7.
Superantigen-activated T cells can be targeted by monoclonal antibodies (mAb) to lyse MHC class II negative tumour cells. In this study we determined the susceptibility of the T-lymphoblastoid leukaemic cell line CCRF-CEM and its multidrug resistant sublines CCRF VCR100, CCRF VCR1000 and CCRF ADR5000 to lysis by monoclonal antibody-targeted and superantigen-activated T cells (superantigen-dependent cellular cytotoxicity, SDCC). A recombinant fusion protein of protein A and the superantigen Staphylococcus enterotoxin A (SEA) was used together with the mAbs anti-CD7, anti-CD38, anti-CD45RA and 4E3 (anti-P-glycoprotein) to correlate susceptibility to SDCC with expression of the MDR1-gene product. Our results demonstrated SDCC to be independent of MDR1-gene expression. This was further confirmed by blocking the function of Pgp in the leukaemic cell lines with a cyclosporine A derivative, which had no influence on SDCC. As expected, expression of the respective cell surface antigens on target cells had a strong impact on SDCC, although other factors seem to influence efficiency of SDCC as well.  相似文献   

8.
9.
Treatment of cancer cells lacking p53 function with G2 checkpoint inhibitors sensitizes them to the toxic effects of DNA damage and has been proposed as a strategy for cancer therapy. However, few inhibitors are known, and they have been found serendipitously. We report the development of a G2 checkpoint inhibition assay that is suitable for high-throughput screening and its application to a screen of 1300 natural extracts. We present the isolation of a new G2 checkpoint inhibitor, the structurally novel compound isogranulatimide. In combination with gamma-irradiation, isogranulatimide selectively kills MCF-7 cells lacking p53 function.  相似文献   

10.
11.
This study was designed to evaluate the effectiveness of zinc sulphate both in vitro and in an animal model against both strains of old world cutaneous leishmaniasis. The in vitro sensitivities of promastigotes and axenic amastigotes of both Leishmania major and L. tropica to zinc sulphate was determined, the LD50 calculated and compared to the standard treatment for cutaneous leishmaniasis pentavalent antimony compounds. The results show that the two forms of both strains were sensitive to zinc sulphate and their respective LD50 were lower compared to the pentavalent antimony compound. Furthermore the sensitivities of the forms of both strains were tested using a simple slide method and compared to results of the standard method. To confirm this result, zinc sulphate was administered orally to mice infected with cutaneous leishmaniasis both therapeutically and prophylactically. Results showed that oral zinc sulphate was effective in both treatment and prophylaxis for cutaneous leishmaniasis. These results encourage the use of oral zinc sulphate in the treatment of cutaneous leishmaniasis clinically.  相似文献   

12.
The GM2 gangliosidoses are a group of heritable neurodegenerative disorders caused by excessive accumulation of the ganglioside GM2 owing to deficiency in beta-hexosaminidase activity. Tay-Sachs and Sandhoff diseases have similar clinical phenotypes resulting from a deficiency in human hexosaminidase alpha and beta subunits, respectively. The lack of treatment for GM2 gangliosidoses stimulated interest in developing animal models to understand the molecular mechanisms underlying the various forms of this disease and to test new potential therapies. In this review, we discuss the molecular biology of GM2 gangliosidoses and the different strategies that have been tested in animal models for the treatment of this genetic disorder, including gene transfer and cell engraftment of neural stem cells engineered to express the hexosaminidase isoenzymes.  相似文献   

13.
Eu2+ activated BaSi2O2N2 oxynitride bluish-green phosphor was synthesized adopting conventional high-temperature solid-state reaction method, in which BaF2, Na2CO3 and NH4Cl were used as the fluxes. The phase formation, size distribution and microscopic morphology were characterized to investigate the influence of adding fluxes on photoluminescence properties. The results indicate that with the addition of BaF2 flux, the particle morphology becomes regular and size distribution narrows and the phase purity of BaSi2O2N2:Eu2+ phosphor can be improved effectively. The photoluminescence intensity of BaSi2O2N2:Eu2+ phosphor with BaF2 as flux gets enhanced obviously, which is much higher than that of Na2CO3, NH4Cl and without flux. The optimum content of BaF2 flux is 4 wt%, and the maximum photoluminescence intensity of the BaSi2O2N2:Eu2+ phosphor prepared with BaF2 flux rises to 141%, meanwhile, the phosphors with BaF2 flux exhibits low thermal quenching. The results indicate that the BaSi2O2N2:Eu2+ is sort of promising bluish-green phosphor for application in full-spectra LED.  相似文献   

14.
15.
Five stereochemically constrained analogs of the chemotactic tripeptide incorporating 1-aminocycloalkane-1-carboxylic acid (Ac(n)c) and alpha,alpha-dialkylglycines (Deg, diethylglycine; Dpg, n,n-dipropylglycine and Dbg, n,n-dibutylglycine) at position 2 have been synthesized. NMR studies of peptides For-Met-Xxx-Phe-OMe (Xxx=Ac(7)c, I; Ac(8)c, II; Deg, III; Dpg, IV and Dbg, V; For, formyl) establish that peptides with cycloalkyl residues, I and II, adopt folded beta-turn conformations in CDCl3 and (CD3)2SO. In contrast, analogs with linear alkyl sidechains, III-V, favour fully extended (C5) conformations in solution. Peptides I-V exhibit high activity in inducing beta-glucosaminidase release from rabbit neutrophils, with ED50 values ranging from 1.4-8.0 x 10(-11) M. In human neutrophils the Dxg peptides III-V have ED50 values ranging from 2.3 x 10(-8) to 5.9 x 10(-10) M, with the activity order being V > IV > III. While peptides I-IV are less active than the parent, For-Met-Leu-Phe-OH, in stimulating histamine release from human basophils, the Dbg peptide V is appreciably more potent, suggesting its potential utility as a probe for formyl peptide receptors.  相似文献   

16.
(E)-2-Hexenal (hexenal), a natural flavor compound, acts as directly genotoxic agent and forms cyclic 1,N2-propano adducts with deoxyguanosine. Formation of this adduct in isolated DNA and in cells was studied with a modified 32P-postlabeling procedure including HPLC separation, nuclease P1 enrichment, two-dimensional TLC of adducted nucleotide bisphosphates on PEI-cellulose, and quantification of adduct spots by liquid scintillation counting. Adduct formation with the more reactive crotonaldehyde was included for comparison. Synthesized adducted dG-3'-phosphates served as external standards for identification and quantification. In calf thymus DNA, hexenal (0.2 mM) shows a time dependent formation of adducts, yielding 1.55 pmol/mumol of DNA at 5 h incubation. With crotonaldehyde (0.2 mM) the adduct rate was about 10-fold higher. Hexenal also generated 1,N2-propano-dG adducts in the human lymphoblastoid Namalva cell line (0.2 mM, 1 h, 86 fmol/mumol of DNA) and in primary rat colon mucosa cells (0.4 mM, 30 min, 50 fmol/mumol of DNA). In primary colon mucosa cells from rats and humans, hexenal and crotonaldehyde (0.4 mM, 30 min) induced DNA damage, detected by single cell microgel electrophoresis (comet assay). In primary rat gastric mucosa cells, hexenal was only weakly active, inducing detectable DNA damage in 20% of cells at 0.8 mM concentration. In contrast, primary mucosa cells from rat esophagus were as sensitive as colon cells. After single oral application of hexenal to rats (up to 320 mg/kg body wt) DNA damage was not detectable in gastrointestinal mucosa. Analysis of hexenal in selected flavored foods revealed concentrations up to 14 ppm (0.14 mM) that are comparable to its natural occurrence in some fruits and vegetables (up to 30 ppm). Thus, the concentration range selected for the toxicological studies described here clearly is relevant: Hexenal, at concentrations found in food, exerts genotoxic effects in cells from rat and human gastrointestinal tract.  相似文献   

17.
18.
Acetaldehyde is produced by metabolic oxidation of ethanol after drinking alcoholic beverages. This agent reacts with nucleosides and nucleotides, resulting in the formation of N2-ethyl-guanine residues. N2-ethyl-2'-deoxyguanosine (N2-ethyl-dG) adduct has been detected in the lymphocyte DNA of alcoholic patients [Fang, J. L., and Vaca, C. E. (1997) Carcinogenesis 18, 627-632]. Thus, the nucleotide pool is also expected to be modified by acetaldehyde. N2-Ethyl-2'-deoxyguanosine triphosphate (N2-ethyl-dGTP) was chemically synthesized. The utilization of N2-ethyl-dGTP during DNA synthesis was determined by steady-state kinetic studies. N2-Ethyl-dGTP was efficiently incorporated opposite template dC in reactions catalyzed by mammalian DNA polymerase alpha and delta. When pol alpha was used, the insertion frequency of N2-ethyl-dGTP was 400 times less than that of dGTP, but 320 times higher than that of 7,8-dihydro-8-oxo-2'-deoxyguanosine triphosphate (8-oxo-dGTP), an oxidative damaged nucleotide. Using pol delta, the insertion frequency of N2-ethyl-dGTP was only 37 times less than that of dGTP. The chain extension from dC:N2-ethyl-dG pair occurred much more rapidly: the extension frequencies for pol alpha and pol delta were only 3.8 times and 6.3 times, respectively, lower than that of dC:dG pair. We also found that N2-ethyl-dG can be detected in urine samples obtained from healthy volunteers who had abstained from drinking alcohol for 1 week before urine collection. This indicates that humans are exposed constantly to acetaldehyde even without drinking alcoholic beverages. Incorporation of N2-ethyl-dG adducts into DNA may cause mutations and may be related to the development of alcohol- and acetaldehyde-induced human cancers.  相似文献   

19.
Exposure to micro-organisms can be measured by different methods. Traditionally, viable methods and light microscopy have been used for detection of micro-organisms. Most viable methods measure micro-organisms that are able to grow in culture, and these methods are also common for the identification of micro-organisms. More recently, non-viable methods have been developed for the measurement of bioaerosol components originating from micro-organisms that are based on microscopic techniques, bioassays, immunoassays and chemical methods. These methods are important for the assessment of exposure to bioaerosols in work environments as non-infectious micro-organisms and microbial components may cause allergic and toxic reactions independent of viability. It is not clear to what extent micro-organisms should be identified because exposure-response data are limited and many different micro-organisms and microbial components may cause similar health effects. Viable methods have also been used in indoor environments for the detection of specific organisms as markers of indoor growth of micro-organisms. At present, the validity of measurement methods can only be assessed by comparative laboratory and field studies because standard materials of microbial bioaerosol components are not available. Systematic errors may occur especially when results obtained by different methods are compared. Differences between laboratories that use the same methods may also occur as quality assurance schemes of analytical methods for bioaerosol components do not exist. Measurement methods may also have poor precision, especially the viable methods. It therefore seems difficult to meet the criteria for accuracy of measurement methods of workplace exposure that have recently been adopted by the CEN. Risk assessment is limited by the lack of generally accepted reference values or guidelines for microbial bioaerosol components. The cost of measurements of exposure to microbial bioaerosol components may be high owing to expensive analyses and highly variable exposure levels. The use of qualitative indicators of microbial growth, recording of health effects, specific immunoglobulin G antibody levels to prevalent species in serum of exposed workers and stratified sampling may help to reduce the costs of exposure assessment. An example of a combined strategy for assessment of health risks from handling mouldy timber is shown.  相似文献   

20.
The conformations of two paclitaxel analogs modified at the C-2' position, 2'-deoxypaclitaxel and 2'-methoxypaclitaxel, were studied in hydrophobic and hydrophilic solvent systems by a combination of NMR spectroscopy, CD measurements, and molecular modeling. Both analogs have hydrophobic and hydrophilic conformations that resemble those of paclitaxel itself in the same media. Since the two have diminished biological activities in a number of bioactivity assays and the hydrogen-bonding capability of the 2'-hydroxyl group has been eliminated, we postulate that this group is involved in hydrogen bonding with tubulin and plays an important role in molecular recognition. The results of this study are in agreement with our earlier report on paclitaxel 2'-acetate, an analog in which the 2'-hydroxyl group hydrogen-bonding capacity has also been eliminated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号