首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Kalin  J. Vi?intin 《Wear》2006,261(1):22-31
Diamond-like carbon (DLC) coatings, which can nowadays be applied to many highly loaded mechanical components, sometimes need to operate under lubricated conditions. It is reasonable to expect that in steel/DLC contacts, at least the steel counter body will behave according to conventional lubrication mechanisms and will interact with lubricants and additives in the contact. However, in DLC/DLC contacts, such mechanisms are still unclear. For example, the “inertness” of DLC coatings raises several questions about whether they are able to provide real boundary “lubrication” or whether they are just a “passive” member in these contacts. On the other hand, biodegradable oils, in particular vegetable base oils, possess a good lubricating ability, often much better than mineral or conventional synthetic oils as a result of the large amount of un-saturated and polar components that can promote the lubricity of DLC coatings. Accordingly, in this study, we present the results of experiments under severe boundary-lubrication conditions during reciprocating sliding. We look at the effect of the type of mating surfaces - steel/DLC, DLC/DLC and steel/steel - and the type of oil on the tribological performance of DLC coatings. We compare the wear and friction behaviours of two types of DLC coatings, i.e., a “pure” non-doped a-C:H DLC coating (denoted as a-DLC) and a WC-containing multilayer coating (denoted as W-DLC) tested with a mineral oil and a biodegradable vegetable oil. These oils, which have very different chemical compositions, were used as base oils and also with mild AW and strong EP additives. Among other things, the results confirm the following: (1) coating/coating lubricated contacts can resemble metal-lubrication mechanisms; (2) additives reduce wear in coating/coating contacts by up to 80%; (3) better wear and friction performance are obtained with oils that contain large amounts of polar and un-saturated molecules; (4) a coating/coating combination generally results in less wear than a steel/coating combination.  相似文献   

2.
In the present study, the tribological performance and compatibility of hydrogenated amorphous carbon coating (a-C:H) and metal-doped diamond-like carbon (DLC) coating (Me-C:H) with formulated oils under the boundary lubrication regime was investigated. The investigation employed ball-on-flat contact geometry in reciprocating sliding motion and six formulated oils (manual gearbox oil, automatic gearbox oil, hydraulic oil, compressor oil, and normal and high performance motor oil), with pure poly-alpha-olefin (PAO) oil used as a reference. In addition, DLC coatings behavior in diesel and gasoline fuel was evaluated.Compared with the uncoated steel surfaces a-C:H coatings give improved wear resistance in base PAO as well as in fully formulated oils and fuels. On the other hand, W-doped DLC coatings show the lowest steady-state friction under boundary lubrication, especially when using oils with high additive contents.  相似文献   

3.
Diamond-like-carbon (DLC) coating of thickness 3 and 10 μm were developed with and without radical nitriding pretreatment on steel rollers and spur gear pair. The friction coefficient and wear amount were evaluated under sliding rolling contact condition in vacuum and under oil lubrication. Delamination of coatings was observed at the interface of the substrate. The wear resistance of coatings improved with the thickness of the coating. In vacuum both the roller and the gear pair of 10 μm coating thickness with radical nitriding showed identical wear behavior. The radical nitriding seemed to enhance the life of DLC coatings.  相似文献   

4.
A ferrous-based coating with significant chromium was fabricated on aluminum alloy substrate using a plasma spray technique. The tribological performance of the as-fabricated ferrous-based coating sliding against different coatings including Cr, CrN, TiN, and diamond-like carbon (DLC) in an engine oil environment were comparatively studied. Results showed that the high hardness of the sprayed ferrous-based coating was achieved due to the dispersion strengthening effect of Cr7C3 phase embedded in the austenite matrix. The ferrous-based coating exhibited low friction coefficients when coupled with these four coating counterparts, which could be attributed to the boundary lubricating effect of engine oil. However, both friction and wear of the ferrous-based coating were different when sliding against these different coating counterparts, which might be closely related to the surface roughness, self-lubricating effect, and mechanical properties of the coupled coatings. Ferrous-based coating sliding against CrN and DLC coatings exhibited good tribological performance in engine oil. The best coating counterpart for the ferrous-based coating in an engine was DLC coating.  相似文献   

5.
The interfacial roughness and the adhesion strength are very important for making a high-quality coating for friction and wear applications. In order to obtain a quantitative understanding concerning the effect of the two factors on the local delamination of hard coatings, finite element analyses concerning the maximum shear stress in a hard coating with various kinds of interfacial roughness and adhesion strength were made under low and high frictional conditions. As a result, local delamination maps for the identification of the local delamination of hard coatings were obtained as a function of the shear strength ratio of coating to substrate and the ratio of coating thickness to half-contact width. Also, the critical contact pressure required to produce local delamination of hard coatings is given.  相似文献   

6.
H Benabdallah 《Wear》2003,254(12):1239-1246
Measurements were made of the dynamic friction coefficients and specific wear rates of several thermoplastics rubbing against relatively soft coatings on steel plates. Polyoxymethylene (POM)-based composites were investigated using reciprocating, line contact tests against two types of corrosion-protected steel plates (electro-deposited cathodic epoxy layers, called “E-coatings”, and galvanised plates). In addition to virgin POM, composites containing glass fibres, polytetrafluoroethylene (PTFE) fibres, PTFE micro-powder, and high-viscosity silicon oil were investigated. Sliding speeds ranged from 0.05 to 0.3 m/s, and normal loads ranged from 5 to 30 N. The E-coating failed at high loads and velocities. The beneficial effects of lubricating additives in tests with uncoated steel counterfaces were also observed with the coated steel surfaces. POM with glass fibre additives was found to be more abrasive than the base material. The considered non-conformal contact produced similar friction and wear trends than those obtained for the conformal contact.  相似文献   

7.
Abstract

The fuel economy and reduction of harmful elements in lubricants are becoming important issues in the automotive industry. An approach to respond to these requirements is the potential use of low friction coatings in engine components exposed to boundary lubrication conditions. Diamond-like carbon (DLC) coatings extensively studied as ultralow friction films to protect the surfaces of ductile metals for space applications are expected to fulfil this part. The main purpose of this work is to investigate the friction and wear properties of glycerol lubricated DLC coatings under boundary lubrication conditions. The DLC material consists of tetrahedral hydrogen free amorphous diamond-like carbon (denoted as ta-C) as shown by the time of flight secondary ion mass spectroscopy (ToF-SIMS) analyses and the nanoindentation measurements. The friction coefficient below 0&middot.01, called superlubricity, and no measurable wear were obtained by sliding the ta-C/ta-C friction pair in the presence of pure glycerol as a lubricant at 353 K. The mechanism by which glycerol is able to reduce the friction in the millirange was revealed by ToF SIMS analyses inside and outside wear scars formed by friction experiments using deuterated glycerol and 13C glycerol.  相似文献   

8.
The use of low friction coatings like amorphous carbon or metal-doped carbon coatings on machine elements is constantly increasing. Most often, a surface treatment, e.g. grinding and polishing or honing, is required for optimal performance of the coated machine element. This can be time consuming and costly.In this study, the effect of surface roughness on friction and sliding wear of two different coatings, one tungsten containing and one chromium containing coating, were examined using a ball-on-disc test. Ball bearing steel plates were grinded to different surface roughnesses and coated with the two different coatings.The friction was found to depend on surface roughness where the rougher surfaces gave higher friction coefficients. The wear rate for the a-C:W coating was found to be independent of the roughness, whereas the roughness had a strong influence on the wear rate for the a-C:Cr coating. This could partly be explained by a difference in wear mechanism, where fatigue wear was observed for the a-C:Cr coating but not for the a-C:W coating.  相似文献   

9.
This paper presents a unique tribological system that is able to produce no measurable wear of material combination and that reduces friction markedly in the ultralow regime under boundary lubrication. Ultralow friction (0.03) was obtained by sliding hydrogen-free Diamond-Like-Carbon ta-C against ta-C lubricated with Poly-alpha Olefin base oil containing Glycerol Mono-Oleate (GMO) additive. The origin of ultralow friction in these conditions has been investigated by surface analysis techniques. Results are in agreement with the formation of a OH-terminated carbon surface. This new surface chemistry might be formed by the tribochemical reaction of alcohol function groups with the friction-activated ta-C atoms. The origin of low friction could be due to the very low-energy interaction between OH-terminated surfaces.  相似文献   

10.
Diamond-like carbon coatings (DLCs) are considered to hold great promise for improvement in friction and wear resistance of engine parts. It is hence interesting to know whether conventional engine oil additives such as ZDDP can form tribofilms and reduce friction and wear in DLC contacts as effectively as they do in steel on steel contacts. This paper compares the behaviour with ZDDP of six different DLC coatings. It is seen that ta-C gives lower boundary friction than the other types while a-C:H gives better wear prevention. A ZDDP-derived tribofilm forms on all DLCs but a pad-like structure is seen only on W-DLC in DLC/DLC tribopairs.  相似文献   

11.
Per Lindholm 《Wear》2006,261(1):107-111
The design of coatings for highly loaded component contacts, such as bearings, gears and valve train components involves several important factors, including load, friction, lubrication, surface characteristics and material parameters. This paper presents an investigation of the influence of the material, coating thickness and surface roughness on tensional stress levels for coatings that are more compliant than the substrate material. Specifically the effect of multiple asperity contact is studied in three dimensions. The simulation is based on a finite element model where the load is applied as several interacting Hertzian pressure distributions.The results show that the surface structure, in combination with the elastic properties of the coating, has a large influence on the tensional stress level in the coating. The highest tensional stress level in the coating occurs when contact spots almost overlap neighbouring cells and at the same time the size of the contact spots is in the same order of magnitude as the coating thickness.  相似文献   

12.
为探求DLC涂层对气门挺柱摩擦学性能的影响,制备了三种不同表面处理的气门挺柱,搭建了配气机构试验台架,对比分析了不同顶面处理方法的气门挺柱在不同转速和缸盖温度下的摩擦功耗;测试了试验前后气门挺柱和凸轮的表面形态,研究了DLC涂层表面特性及其耐磨损特性。试验结果表明,DLC涂层能够减小气门挺柱表面粗糙度,含Si的DLC涂层表面粗糙度极小;气门挺柱与凸轮之间的摩擦力矩随着凸轮轴转速上升逐渐减小,随着缸盖温度上升逐渐增大;相对于传统碳氮共渗气门挺柱,DLC涂层能有效减小摩擦损失,含Si的DLC涂层能减小高达20%的摩擦损失;无涂层气门挺柱和不含Si的DLC涂层气门挺柱的耐磨性较差,含Si的DLC涂层具有极好的耐磨性。  相似文献   

13.
The use of oil-soluble organo-molybdenum compounds in engine oils can help in fuel conservation by reducing engine friction and increase durability by improving wear characteristics. The tribological behaviour of molybdenum dialkyldithiophosphate (MoDDP) was studied with a SRV Optimal tester under reciprocating sliding conditions. The studies were conducted under nonconformal contact conditions on En-31 steel and conformal contact conditions on piston ring and liner materials. The results indicated that the frictional behaviour of these additives is shear sensitive. Shear sensitivity is influenced by materials, operating conditions and the interaction of MoDDP with additives present in the oil. MoDDP when used in base oil was found to increase the scuff resistance of ring and liner materials. The use of the additive reduced friction and wear (running in as well as normal) under nonconformal contact conditions, while under conformal contact conditions its effect was selective and limited.  相似文献   

14.
Components used in magnetic storage systems (hard discs, tape heads and drums) are often very small and lightweight, and operate under very low loads (of the order of a few micrograms to a few milligrams). As a result, friction and wear processes occur on a nanometre scale and conventional tribological test methods and assessment tools are usually not appropriate. Furthermore, the assessment of the mechanical properties of the coatings or surface treatments used to protect these components from wear is complicated by the low thickness of the layers generally used. This paper details the problems associated with the assessment of the mechanical properties of thin diamond-like carbon coatings used to protect hard discs, tape heads and air bearings. Whereas thick coatings (>1 μm) are relatively easy to assess, even if the substrate has a low hardness and offers little support to the coating, there are many more problems when it comes to measuring the properties of the 5–10 nm layer on a hard disc. In many cases there is no plastic deformation of the coating which merely flexes and bends into the hole produced by plastic deformation of the substrate. Deformation of the coating is then limited to localised plasticity at the indenter edges, and/or fracture along the same edges and at the edge of the contact. The limits for use of Nanoindentation to assess the plasticity of the coating are discussed for such cases.  相似文献   

15.
Amorphous carbon (a-C) coating with luminescent wear-sensing underlayer is developed for achieving the tribological coating with wear monitoring capability. Wear monitoring of a-C coating by luminescent spectroscopy to determine the remaining thickness of the coating after the wear test is also demonstrated. The coating structure consists of a-C films deposited by R.F. magnetron sputtering method onto the luminescent layer, which is made from silica coating containing CdSe/ZnS quantum dots (Silica/QD). A thin Si-intermediate layer is added between a-C and silica/QD layer for adhesion improvement. The physical as well as tribological properties of the coatings are analysed. Furthermore, wear monitoring of a-C films is also demonstrated to determine the remaining coating thickness after the tribological test. The demonstration is carried out by firstly formulating a relation between luminescent intensity detected from the coating and coating thickness. Then the luminescent intensity is measured again from the wear track. The remaining thickness is finally determined by using the relationship between luminescent intensity and coating thickness. The fabricated coating exhibits a smooth surface with the average surface roughness of 1.35 nm and a friction coefficient of 0.1. The demonstration of wear monitoring shows that the remaining thickness of the coating after the tribological test determined by luminescent spectroscopy is compared well with the thickness measured by profilometry. This suggests that wear monitoring of a-C films by luminescent spectroscopy technique is feasible.  相似文献   

16.
This paper presents a material combination that reduces the friction coefficient markedly to a superlow friction regime (below 0.01) under boundary lubrication. A state approaching superlubricity was obtained by sliding hardened steel pins on a hydrogen-free diamond-like carbon (DLC) film (ta-C) lubricated with a poly-alpha-olefin (PAO) oil containing 1 mass% of an ester additive. This ta-C/steel material combination showed a superlow friction coefficient of 0.006 at a sliding speed of 0.1 m/s. A hydrogencontaining DLC coating/steel combination also showed a lower friction coefficient in air than a steel/steel combination, 0.1 vs. 0.8, but no large reduction was observed when the sliding surfaces were lubricated with ordinary 5W-30 engine oil and the PAO oil containing an ester additive. The friction coefficient of the hydrogen containing DLC/steel combination lubricated with the PAO containing an ester additive was above 0.05. On the other hand, the superlow friction performance demonstrates that the rolling contact friction level of needle roller bearings can be obtained in sliding contact under a boundary lubrication condition. It is planned to apply this advanced DLC coating technology to valve lifters lubricated with a newly formulated engine oil in actual mass-produced gasoline engines. A larger friction reduction of more than 45% is expected to be obtained at an engine speed of 2000 rpm.  相似文献   

17.
The friction of diamond and diamond-like carbon (DLC) materials was evaluated in reciprocating sliding wear testing under controlled relative humidity. The testing conditions were a displacement stroke of 100 μm, an oscillatory frequency of 8 Hz and a normal load of 2 N. The coefficient of friction of diamond and hydrogen-free DLC (a-C) coatings against a corundum sphere in the steady regime decreased with an increase in relative humidity. A water layer physisorbed at the interface between the mating surfaces played two major roles: acting as a lubricant and increasing the true area of contact. However, it was noticed that the friction coefficient of the hydrogenated DLC (a-C:H) coatings first increased and then decreased with increasing relative humidity in the steady state. There appeared to be a critical relative humidity for the a-C:H coatings, at which the steady-state friction reached the maximum value. The frictional behaviour of the a-C:H coatings also showed dependence on the wear test duration. The interaction between hydrogen and oxygen at the interface between the a-C:H coating and water layer was mainly responsible for such behaviour.  相似文献   

18.
Boron carbide (B4C) is well known for its high hardness and favorable wear resistant properties. In dry sliding wear contact, it polishes its mating surface and provides fatigue resistance to coated parts. Employing such run-in coatings demands a thorough understanding of the parameters which directly influence the changes that occur in the coating abrasiveness during the polishing process. In this study, the effects of the overall coating thickness, overall coating roughness, substrate roughness and substrate roughness orientation are examined in connection with abrasiveness. The coating thickness only influences the initial abrasiveness, whereas the coating roughness drastically affects the rate at which the abrasiveness decreases. Finally, no significant changes are observed in the abrasiveness due to substrate roughness or substrate roughness orientation effects. This work provides further insight into the design of a finite-life run-in coating.  相似文献   

19.
Increasing environmental awareness and demanding low energy consumption are of the top priorities for future vehicles manufacturing companies. This can be achieved by reducing wear and friction of engine components, so that its efficiency and lifetime can be increased. Surface treatments and coatings contribute to a better lubrication with oils and can participate significantly in achieving these goals. In this paper, diamond-like carbon (DLC) coating has been incorporated to the vehicle piston rings with different RF powers using magnetron sputtering method. The tribological properties like wear and coefficient of friction have been analysed using Pin-on-Disk tribometer. Micro-hardness and nano-hardness of the coated piston rings were characterized by micro-indentor and nano-indentation processes. Surface microstructure and elemental compositions were observed using Scanning Electron Microscopy. Experimental results demonstrated that the DLC coating shows lower wear and friction under similar operating conditions as compared to uncoated piston rings. Thus, usage of DLC coating has enhanced the engine life time. Silicon interlayer has also been applied between nitrided piston rings and DLC layer in order to have better coating adhesion. The properties of the interlayer are not studied but usage of it is found to protect DLC coating from delamination.  相似文献   

20.
Z.F. Zhou  I. Bello  S.T. Lee 《Wear》2005,258(10):1589-1599
This paper describes the tribological performance of diamond-like carbon (DLC) coatings deposited on AISI 440C steel substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) process. A variety of analytic techniques were used to characterize the coatings, such as Raman spectroscopy, atomic force microscopy (AFM) and nano-indentation. The sliding wear and friction experiments were carried out by the conventional ball-on-disk tribometry against 100Cr6 steel counterbody at various normal loads (1-10 N) and sliding speeds (2-15 cm/s). All the wear tests were conducted under dry sliding condition in ambient air for a total rotation cycle of 1 × 105 (sliding distance ∼2.2 km). Surfaces of the coatings and the steel balls were examined before and after the sliding wear tests. The DLC coatings that had been tested all showed relatively low values of friction coefficient, in the range of 0.1-0.2 at a steady-state stage, and low specific wear rates (on the order of 10−8 mm3/Nm). It was found that higher normal loads or sliding speeds reduced the wear rates of the coatings. Plastic deformation became more evident on the coating surface during the sliding wear test at higher contact stresses. The friction-induced transformation of the coating surface into a graphite-like phase was revealed by micro-Raman analysis, and the flash temperature of the contact asperities was estimated. It was suggested that the structural transformation taking place within the wear tracks was mainly due to the formation of compact wear debris layer rather than the frictional heating effect. On the other hand, an adherent transfer layer (tribolayer) was formed on the counterface, which was closely related to the steady-state friction during sliding and the wear mechanisms. Fundamental knowledge combined with the present tribological study led to the conclusion that adhesive wear along with abrasion was probably the dominant wear mechanism for the DLC/steel sliding systems. Additionally, fatigue processes might also be involved in the wear of the coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号