首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
新型短程硝化同步反硝化除磷工艺由厌氧(An)、好氧(O1,O2)、缺氧(A1,A2)、快速曝气(O3) 4个单元组成,在常温条件下可用于处理实际城市污水。在正常运行期间,不用控制进水p H值,且控制好氧1池的溶解氧(DO)浓度为1. 5~2 mg/L、好氧2池的DO浓度为0. 5~1 mg/L时,好氧2池出水亚硝酸盐浓度可以控制在5 mg/L以上,当水力停留时间(HRT)为9 h时,系统对氨氮、COD、总氮和磷酸盐的去除率分别为84. 27%、82. 31%、83. 82%和87. 41%,且出水水质达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准。  相似文献   

2.
好氧反硝化在短程硝化反硝化工艺中的作用研究   总被引:1,自引:0,他引:1  
采用SBR反应器处理垃圾渗滤液,研究了短程硝化反硝化过程中好氧反硝化的作用。结果表明,SBR反应器的亚硝化效果良好,氨氮几乎完全被氧化为NO2^- -N;该系统的活性污泥中同时存在能还原NO3^- -N和NO2^- -N的好氧反硝化菌,还原NO3^- -N的好氧反硝化菌和氨氧化菌的数量及其总活性高于NO2^- -N氧化菌,这是SBR反应器能够长期维持亚硝化状态的重要原因;有机物浓度越高则好氧反硝化速率越快,此时氨氮均被氧化为NO2^- -N,当有机物浓度达到某临界值时,好氧反硝化速率几乎保持不变;溶解氧浓度越低则好氧反硝化速率越快,释放出的OH^-会导致pH值升高。好氧反硝化对于维持和促进SBR反应器的短程硝化反硝化具有重要的作用。  相似文献   

3.
构建以厌氧/好氧/缺氧/快速曝气单元组成的短程硝化同步反硝化除磷工艺,并在常温、低氧条件下用于处理实际城市污水。结果表明,设定水力停留时间(HRT)为9 h,污泥龄为20~25 d,污泥浓度(MLSS)为2 000~4 000 mg/L,且控制好氧1池的溶解氧(DO)浓度为1. 5~2mg/L,好氧2池的DO为0. 5~1 mg/L,并投加氢氧化钠溶液调控好氧池的pH值在8. 5以上,可以实现短程硝化反硝化的快速启动,且出现了反硝化除磷现象,出水水质可达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级B标准。  相似文献   

4.
亚硝酸型硝化反应器处理"中老龄"垃圾渗滤液研究   总被引:1,自引:0,他引:1  
在不控制体系pH值的条件下,研究了温度、水力停留时间和溶解氧对亚硝酸型硝化反应器处理"中老龄"垃圾渗滤液的影响.试验结果表明,在氨氮负荷率为0.069 0~0.284 3gNH4+-N/(gVSS·d)的条件下,可获得令人满意的亚硝化性能,出水NO2--N/NOx--N值为87%~95%.亚硝酸氮稳定积累的主导因素是体系中游离氨(FA)和游离亚硝酸(FNA)对硝酸菌的交替抑制作用.  相似文献   

5.
采用序批式活性污泥法(SBR)处理垃圾渗滤液,在控制系统温度为(28±1)℃、进水pH值为7.9~8.2、MLSS为4 000~4 500 mg/L,并保持进水COD为900~1 000 mg/L、NH+4-N为480~500 mg/L的条件下,考察DO对短程硝化反硝化的影响。结果表明,在80~120 L/h的曝气量下能快速实现稳定的短程同步硝化反硝化,对NH+4-N的平均去除率可达92.5%,NO-2-N的平均积累率为89.3%;系统的最佳曝气量为120 L/h,此时对氨氮的去除率为96.9%,亚硝酸盐积累率为97.2%,好氧段对总氮的去除率为74.7%。  相似文献   

6.
环境温度下短程硝化反硝化试验研究   总被引:4,自引:1,他引:4  
在环境温度(20~30 ℃)下,通过控制反应体系的曝气量和pH,培养了短程硝化反硝化污泥,成功实现了SBR短程硝化反硝化.试验结果表明,在高pH条件下,有利于NH3-N的氧化,同时NO 2-N的累积率大大增加;降低曝气量可提高NO-2-N在体系中的累积率,控制系统的DO为0.4~0.7 mg/L(曝气量为0.1 L/min)、pH=8.3,在进水NH3-N为50 mg/L时,NO-3-N累积率>70%;高进水NH3-N浓度对硝酸菌有明显的抑制作用,而对亚硝酸菌的影响不大.进水NH3-N为120 mg/L时,NO-2-N累积率可达80%.  相似文献   

7.
文章通过室内实验,对高浓度氨氮废水(垃圾渗滤液)间歇曝气,在只存在有机碳、无机氮的条件下进行好氧反硝化脱氮研究。实验结果表明:垃圾渗滤液中存在好氧反硝化土著微生物菌落;发生好氧反硝化的基本条件为在溶解氧充足的条件下间歇曝气;碳源不仅是厌氧反硝化所必须的,同样也是好氧反硝化的必要条件。  相似文献   

8.
采用SBR法处理晚期垃圾渗滤液,在温度为23~25℃、HRT为12.5 h、DO2 mg/L且碱度充足的条件下,仅通过提高渗滤液进水浓度并控制进水NH_4~+-N浓度在240 mg/L左右,以及FA、FNA对亚硝酸氧化菌的协同抑制即实现了稳定的半量亚硝化,NO_2~--N/NH_4~+-N值维持在1.1~1.4之间,满足后续厌氧氨氧化进水的需要。在此基础上,进一步研究进水渗滤液浓度、盐度、DO对半量亚硝化稳定性的影响。结果表明,通过控制进水氨氮浓度为220~300 mg/L、NaCl浓度20 g/L、DO为2.5~3.5 mg/L可有效维持半量亚硝化的稳定性。  相似文献   

9.
常温下A/O工艺的短程硝化反硝化   总被引:8,自引:0,他引:8  
采用A O工艺处理模拟生活污水 ,考察了pH值、游离氨 (FA)、DO、HRT等因素的影响。试验结果表明 ,A O工艺在常温 (18~ 2 5℃ )和pH <7.5时可以发生比较稳定的短程硝化反硝化 ;即使FA浓度低达 0 .0 6mg L也会对硝化菌属产生抑制作用 ,但FA浓度不会单独成为影响亚硝酸盐积累的主要因素 ;反硝化是否彻底将影响硝化类型 ,反硝化不完全时硝化类型向全程硝化反硝化转化 ,而一旦反硝化进行得比较彻底则可在短时间内恢复短程硝化反硝化 ;因硝化反应存在滞后现象 ,故控制较短的HRT有助于NO-2 -N的积累 ,而延时曝气则可以减少NO-2 -N的积累。  相似文献   

10.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

11.
针对焚烧垃圾渗滤液水质的多变性,为了在C/N值较低的情况依旧能够有效脱除总氮,提出了以厌氧/好氧/兼氧/厌氧为基础的大比例回流的短程硝化反硝化工艺,对焚烧垃圾渗滤液进行预处理。通过中试研究了该工艺的可行性,并通过监测水质及污泥浓度的沿程变化规律,分析了对污染物的去除机理。结果表明,通过控制各反应池的DO浓度及出水的回流比,实现亚硝态氮的积累和稳定的反硝化是可行的,且系统pH值能够稳定在7~8.5之间。系统最佳的HRT为2.9 d,此时出水COD、氨氮及总氮分别为778.1、15和136.9 mg/L,去除率分别为70.3%、96.6%和69.6%,亚硝化率为92.9%。污染物的去除主要发生在第一级厌氧池中,且以吸附去除为主;微生物的同化作用与增殖主要发生在兼氧池中。污泥回流确保了第一级厌氧池具有较高的污泥量与较好的处理效果。  相似文献   

12.
从反硝化脱氮系统中筛选出一株高效反硝化功能菌FH2,经鉴定为蜡状芽孢杆菌,静态试验中,在NO-3-N浓度为400 mg/L的条件下,该菌对NO-3-N的去除率高达100%。以该菌作为生物强化菌源,进行生物强化反硝化试验研究,结果表明,在保证达到理想脱氮效果的条件下,生物强化工艺可承受的进水NO-3-N浓度最高为340 mg/L,比普通工艺提高了100 mg/L,并且生物强化工艺的启动时间明显缩短,耐负荷冲击能力和运行稳定性得到明显增强,表明应用该优势菌进行生物强化反硝化脱氮具有可行性。  相似文献   

13.
DO浓度对SUFR系统同步硝化反硝化的影响   总被引:1,自引:1,他引:0  
采用螺旋升流式反应器(SUFR)处理生活污水,考察了好氧反应池中DO浓度对其同步硝化反硝化的影响。结果表明,在好氧反应池上部溶解氧浓度为3.0~3.5mg/L时,发生了明显的同步硝化反硝化现象,其对TN的去除量占SUFR系统对TN去除总量的16%左右;好氧反应池中的同步硝化反硝化反应只发生在池的下部,其中、上部只进行了好氧硝化反应;SUFR系统中好氧反应池上部的最佳溶解氧浓度范围为3.0~3.5mg/L,此时系统的硝化和反硝化效果最佳,好氧反应池中的脱氮效果也较好,系统对TN的去除率〉84%。  相似文献   

14.
MLSS、pH及NO-2-N对反硝化除磷的影响   总被引:31,自引:3,他引:31  
利用DPB反硝化聚磷污泥以SBR进行试验,以考察MLSS、pH值和NO-2-N浓度对聚磷菌厌氧放磷和缺氧吸磷过程的影响.结果表明:增大MLSS可缩短放磷和缺氧吸磷反应时间,但MLSS过高易导致反硝化吸磷后期出现磷的二次释放;随着pH值的升高(pH=6~8)则P/C值也升高,继续升高pH值到8以上时发生了磷酸盐的沉淀,影响到正常的放磷反应.此外,在反硝化吸磷过程中pH值的大幅升高也会对生物除磷效果造成干扰;控制NO-2-N浓度为5.5~9.5mg/L可使聚磷污泥以NO-2-N作为电子受体进行吸磷反应,当NO-2-N达到15 mg/L时反硝化和吸磷反应均受到了抑制.  相似文献   

15.
在我国农村地区,高氨氮养猪废水不经处理肆意排放诱发地表水富营养化,极大程度地破坏了周边水环境及生态系统。将短程硝化反硝化和同步硝化反硝化脱氮原理相结合,进行了一体式填料型A/O工艺用于高氨氮养猪废水的处理中试研究。结果表明,装置在处理量为3m3/d、内回流比为200%的运行条件下,对COD、NH3-N和TN的去除率可分别稳定在86%、87%和73%,出水水质达到《农田灌溉水质标准》(GB 5084—2005)要求。试验过程中,好氧池DO浓度控制在0.8~1 mg/L,出水NO-2-N积累率达到85%,表明好氧池中氨氮氧化反应以短程硝化为主。好氧池中弹性立体填料挂膜成功后,同步硝化反硝化作用明显。  相似文献   

16.
利用移动床生物膜反应器(MBBR)对亚硝化-厌氧氨氧化-反硝化(SNAD)工艺处理垃圾渗滤液厌氧出水的脱氮效果进行了研究。SNAD-MBBR反应器内投加K3填料,控制温度为33~35℃、DO为0. 03~0. 1 mg/L、pH值为7. 5~8. 0、HRT为12 h,试验一共进行了152 d,在进水总氮负荷逐渐增加过程中相应调节曝气量以获得最佳去除效果。结果表明,在该工艺条件下进水总氮负荷为0. 9 kg/(m~3·d)时,TN去除率仍可达88%。当进水总氮负荷继续提高至1 kg/(m~3·d)时,由于进水中的有机物浓度较高以及多种异养好氧菌的繁殖,抑制了亚硝化及厌氧氨氧化过程,致使反应器脱氮效率明显降低,仅为20%左右。  相似文献   

17.
以人工配制的含氮废水为研究对象,通过控制反应器内废水的pH8.48、碱度1 439 mg/L、DO0.1 mg/L、氨氮容积负荷为0.27 kg/(m3.d),在长污泥龄(106 d)活性污泥亚硝化系统中成功实现了反应器出水NH4+-N与NO-2-N的浓度比例接近1∶1的稳定亚硝化积累结果,为早日能够运用亚硝化/厌氧氨氧化生物脱氮工艺实现高效生物脱氮提供了科学依据。  相似文献   

18.
新型短程硝化反硝化工艺处理高浓度氨氮废水   总被引:1,自引:0,他引:1  
研发了一种新型短程硝化反硝化工艺——ANITATMShunt,它通过特殊的自控系统来控制N2O的释放。采用500 L的SBR中试装置处理消化污泥脱水上清液,经过18个月的稳定运行表明:通过短程硝化反硝化途径可以实现90%的脱氮率,并且释放的N2O不足总脱氮量的0.7%。将通过pH值、温度和在线监测的NO-2-N浓度实时计算的亚硝酸浓度与亚硝酸浓度设定值进行比对,以便对曝气过程进行调控,从而抑制了N2O的释放并实现了对SBR短程硝化反硝化工艺的自动控制。同时证实了在低溶解氧条件下,由氨氧化菌(AOB)在短程硝化反硝化过程中产生的N2O并非与高亚硝酸盐浓度有直接关系,而是与游离亚硝酸浓度有关。  相似文献   

19.
半亚硝化是高氨氮污水通过厌氧氨氧化(ANAMMOX)途径脱氮的基础和关键步骤。在序批式反应器(SBR)中接种好氧颗粒污泥(AGS)并处理高氨氮污水,研究了实现半亚硝化的可行性。首先通过调节水力停留时间及进水氨氮浓度实现稳定的短程硝化。进水NH+4-N约为220mg/L时,对NH+4-N的去除率达到98%左右,亚硝态氮积累率(NAR)约为95%,并能够保持稳定运行。此后通过缩短水力停留时间为6 h可控制反应器出水NH+4-N/NO-2-N值在1.0左右,满足ANAMMOX对进水水质的要求。在氨氮氧化过程中NO-3-N浓度基本保持不变,氨氧化菌(AOB)为优势硝化菌群;扫描电镜表明颗粒污泥中主要是球菌、短杆菌,符合AOB的形态特征。  相似文献   

20.
为了研究过度厌氧对短程硝化的影响,采用SBR反应器,在pH值为7.2~8.0、温度为(23±0.5)℃的条件下,通过控制不同的厌氧段时间考察了厌氧/好氧交替方式下短程硝化的特点,分析了过度厌氧对亚硝酸盐积累率、亚硝化菌和硝化菌的比耗氧速率、脱氮除磷特性、同步硝化反硝化(SND)率及污泥沉降性的影响。结果显示,两个系统对氨氮的去除率都达到了96%,亚硝酸盐积累率稳定在70%左右,即过度厌氧对短程硝化无明显影响;硝化过程中发生了明显的同步脱氮现象,而且在小于0.4 mg/L的范围内,平均溶解氧浓度越高则SND率越高;除磷率都达到了95%,过度厌氧不会增加厌氧阶段的释磷量,吸磷主要发生在好氧前0.5 h,DO浓度越高则吸磷速率越快;两个系统的污泥沉降性都得到了改善,过度厌氧对抑制丝状菌膨胀的强化作用不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号