首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

To date silica nanoparticles (SNPs) play an important role in modern technology and nanomedicine. SNPs are present in various materials (tyres, electrical and thermal insulation material, photovoltaic facilities). They are also used in products that are directly exposed to humans such as cosmetics or toothpaste. For that reason it is of great concern to evaluate the possible hazards of these engineered particles for human health. Attention should primarily be focussed on SNP effects on biological barriers. Accidentally released SNP could, for example, encounter the alveolar-capillary barrier by inhalation. In this study we examined the inflammatory and cytotoxic responses of monodisperse amorphous silica nanoparticles (aSNPs) of 30 nm in size on an in vitro coculture model mimicking the alveolar-capillary barrier and compared these to conventional monocultures.  相似文献   

2.
Practical uses of nanomaterials are rapidly spreading to a wide variety of fields. However, potential harmful effects of nanomaterials are raising concerns about their safety. Therefore, it is important that a risk assessment system is developed so that the safety of nanomaterials can be evaluated or predicted. Here, we attempted to identify novel biomarkers of nanomaterial-induced health effects by a comprehensive screen of plasma proteins using two-dimensional differential in gel electrophoresis (2D-DIGE) analysis. Initially, we used 2D-DIGE to analyze changes in the level of plasma proteins in mice after intravenous injection via tail veins of 0.8 mg/mouse silica nanoparticles with diameters of 70 nm (nSP70) or saline as controls. By quantitative image analysis, protein spots representing >2.0-fold alteration in expression were found and identified by mass spectrometry. Among these proteins, we focused on hemopexin as a potential biomarker. The levels of hemopexin in the plasma increased as the silica particle size decreased. In addition, the production of hemopexin depended on the characteristics of the nanomaterials. These results suggested that hemopexin could be an additional biomarker for analyzing the biological responses associated with exposure to silica nanoparticles. We believe that this study will contribute to the development of biomarkers to ensure the safety of silica nanoparticles.  相似文献   

3.

Background  

Experimental studies provide evidence that inhaled nanoparticles may translocate over the airspace epithelium and cause increased cellular inflammation. Little is known, however, about the dependence of particle size or material on translocation characteristics, inflammatory response and intracellular localization.  相似文献   

4.
5.
Adsorption and release of biocides with mesoporous silica nanoparticles   总被引:4,自引:0,他引:4  
Popat A  Liu J  Hu Q  Kennedy M  Peters B  Lu GQ  Qiao SZ 《Nanoscale》2012,4(3):970-975
In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules.  相似文献   

6.
This study aimed to compare the inhibitory effects of photosensitizers loaded in hollow silica nanoparticles and conventional photosensitizers on HepG2 human hepatoma cell proliferation and determine the underlying mechanisms. Photosensitizers (conventional Photosan-II or nanoscale Photosan-II) were administered to in vitro cultured HepG2 hepatoma cells and treated by photodynamic therapy (PDT) with various levels of light exposure. To assess photosensitizers'' effects, cell viability was determined by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, apoptotic and necrotic cells were measured by flow cytometry and the expression of caspase-3 and caspase-9 evaluated by western blot. Finally, the in vivo effects of nanoscale and conventional photosensitizers on liver cancer were assessed in nude mice. Nanoscale Photosan-II significantly inhibited hepatoma cell viability in a concentration-dependent manner and this effect was more pronounced with high laser doses. Moreover, nanoscale photosensitizers performed better than the conventional ones under the same experimental conditions (p < 0.05). Flow cytometry data demonstrated that laser-induced cell death was markedly increased after treatment with nanoscale Photosan-II in comparison with free Photosan-II (p < 0.05). Activated caspase-3 and caspase-9 levels were significantly higher in cells treated with Photosan-II loaded in silica nanoparticles than free Photosan-II (p < 0.05). Accordingly, treatment with nanoscale photosensitizers resulted in improved outcomes (tumor volume) in a mouse model of liver cancer, in comparison with conventional photosensitizers. Hollow silica nanoparticles containing photosensitizer more efficiently inhibited hepatoma cells than photosensitizer alone, through induction of apoptosis, both in vivo and in vitro.  相似文献   

7.
The electrochemical behaviour and tribological properties of carbon steel coated with bis-[trimethoxysilylpropyl]amine (BTSPA) filled with SiO2 were evaluated. The silane film filled with SiO2 was prepared by adding different SiO2 concentrations. The electrochemical behaviour of the coated steel was mainly evaluated by means of open-circuit potential (EOC), electrochemical impedance spectroscopy (EIS) and polarization curves, in 0.1 mol L−1 NaCl solution. Structural and morphological characterizations were made by optical, electron and atomic force microscopy (AFM). EOC and EIS data showed that sample filled with 300 ppm SiO2 presented the highest EOC and total impedance value. AFM measurements showed a homogeneous particle distribution of SiO2 particles. Nanohardness measurements showed SiO2 promoted an increase of the hardness mean value (1.70 ± 0.11 GPa to non-filled BTSPA and 2.21 ± 0.05 GPa for sample filled with 300 ppm SiO2). Silane films when filled with SiO2 particles improved the corrosion resistance of the steel substrate. The optimum SiO2 particles concentration in silane solution is 300 ppm SiO2. Incorporation of an extra amount of silica into BTSPA film led to degradation of the corrosion protection of the film to the substrate.  相似文献   

8.
L. Elias  F. Fenouillot  Ph. Cassagnau 《Polymer》2007,48(20):6029-6040
The effect of silica nanoparticles on the morphology and the rheological properties of an immiscible polymer blend (polypropylene/polystyrene, PP/PS 70/30) was investigated. Two types of pyrogenic nanosilica were used: a hydrophilic silica with a specific surface area of 200 m2/g and a hydrophobic silica having a specific surface area of 150 m2/g. First, a significant reduction in the PS droplet volume radius, from 3.25 to nearly 1 μm for filled blends with 3 wt% silica, was observed. More interestingly, image analysis of the micrographs proved that the hydrophilic silica tends to confine in the PS phase whereas hydrophobic one was located in the PP phase and at the PP/PS interface (interphase thickness ≈ 100-200 nm). Furthermore, a migration of hydrophilic silica from PP phase toward PS domains was observed.An analysis of the rheological experimental data was based on the framework of the Palierne model, extended to filled immiscible blends. Due to the partition of silica particles in the two phases and its influence on the viscosity ratio, limited cases have been investigated. The rheological data obtained with the hydrophobic silica were more difficult to model since the existence of a thick interphase cannot be taken into account by the model. Finally, the hypothesis that hydrophilic silica is homogeneously dispersed in PS droplets and that hydrophobic silica is dispersed in PP matrix was much closer to the actual situation. It can be then concluded that stabilization mechanism of PP/PS blend by hydrophilic silica is the reduction in the interfacial tension whereas hydrophobic silica acts as a rigid layer preventing the coalescence of PS droplets.  相似文献   

9.
C. Triebel  M. Blankenburg 《Polymer》2011,52(16):3621-5236
It has recently been shown that the linear elastic steady-state compliance Je0 reacts very sensitively on the addition of nanoparticles to a polymer melt. This effect can be attributed to an interaction between the particles and the matrix molecules. Creep-recovery experiments have evolved as a very suitable tool to measure Je0, because the time window can be extended wide enough to detect the processes underlying the interactions. Whereas the effect of the particle geometry on Je0 has already been investigated to some extent, the influence of the molecular structure of the matrix is still an open question. Therefore, in this study investigations of two polystyrenes with different molar masses and distributions and composites with 1 vol.% silica nanoparticles each are reported. One polystyrene is an anionic product (aPS) with a narrow molar mass distribution, the other a radically polymerized sample (PS 158K) with a broader molar mass distribution. Due to their molecular structures the unfilled polymers already differ significantly in their rheological properties. The linear steady-state elastic compliance is found to be Je0 = 1.9 × 10−5 Pa−1 for the aPS and Je0 = 2.5 × 10−4 Pa−1 for the PS 158K, which is in agreement with the literature.Investigations on nanocomposites with a poly (methyl methacrylate) of Mw/Mn = 1.5 as the matrix have shown that the elasticity, measured by Je0 in the creep-recovery experiment, strongly increases with the specific surface area of the nanoparticles added. Also for the PS composites an increase of Je0 was found by adding 1 vol.% of silica nanoparticles. However, the relative increase strongly depends on the elasticity of the unfilled matrix. Whereas for the PS 158K an increase of Je0 of only 70% is found, it is much larger, namely 470%, in the case of the anionic PS.  相似文献   

10.

Background

The lung epithelium constitutes the first barrier against invading pathogens and also a major surface potentially exposed to nanoparticles. In order to ensure and preserve lung epithelial barrier function, the alveolar compartment possesses local defence mechanisms that are able to control bacterial infection. For instance, alveolar macrophages are professional phagocytic cells that engulf bacteria and environmental contaminants (including nanoparticles) and secrete pro-inflammatory cytokines to effectively eliminate the invading bacteria/contaminants. The consequences of nanoparticle exposure in the context of lung infection have not been studied in detail. Previous reports have shown that sequential lung exposure to nanoparticles and bacteria may impair bacterial clearance resulting in increased lung bacterial loads, associated with a reduction in the phagocytic capacity of alveolar macrophages.

Results

Here we have studied the consequences of SiO2 nanoparticle exposure on Pseudomonas aeruginosa clearance, Pseudomonas aeruginosa-induced inflammation and lung injury in a mouse model of acute pneumonia. We observed that pre-exposure to SiO2 nanoparticles increased mice susceptibility to lethal pneumonia but did not modify lung clearance of a bioluminescent Pseudomonas aeruginosa strain. Furthermore, internalisation of SiO2 nanoparticles by primary alveolar macrophages did not reduce the capacity of the cells to clear Pseudomonas aeruginosa. In our murine model, SiO2 nanoparticle pre-exposure preferentially enhanced Pseudomonas aeruginosa-induced lung permeability (the latter assessed by the measurement of alveolar albumin and IgM concentrations) rather than contributing to Pseudomonas aeruginosa-induced lung inflammation (as measured by leukocyte recruitment and cytokine concentration in the alveolar compartment).

Conclusions

We show that pre-exposure to SiO2 nanoparticles increases mice susceptibility to lethal pneumonia but independently of macrophage phagocytic function. The deleterious effects of SiO2 nanoparticle exposure during Pseudomonas aeruginosa-induced pneumonia are related to alterations of the alveolar-capillary barrier rather than to modulation of the inflammatory responses.

Electronic supplementary material

The online version of this article (doi:10.1186/s12989-014-0078-9) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
The effect of silica nanoparticles on structure and morphology of low density polyethylene (LDPE) was investigated. To prepare the nanocomposites, SiO2 nanoparticles were dispersed in a LDPE with cryogenic high‐energy ball milling (HEBM). Films of these nanocomposites with different loads (0%, 1.8%, 2.3%, 3.3%, 7.9%, 16.5% wt/wt) were obtained by hot pressing. Differential scanning calorimetry (DSC) was used to study the nonisothermal melting and crystallization of the films. The morphological characterization was done by atomic force microscopy (AFM). To determine the most representative periodical spacing associated to the LDPE crystallites, a new approach based on the first moment of the frequency distribution obtained from the fast Fourier transform of the AFM phase contrast images was used. Ultracryomicrotomed surfaces of the nanocomposites revealed an efficient dispersion of the nanoparticles throughout the polymer bulk. Although HEBM promotes the formation of the metastable monoclinic phase in the LDPE, nanocomposites in the form of films did not show important differences in their thermal and morphological characteristics, suggesting that there are not high interactions between the polar nanoparticles and the nonpolar polymer and that thermal treatment is enough to eliminate the specific microstructure induced by HEBM. POLYM. COMPOS., 33:2009–2021, 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
To increase the photopolymerization rate and improve the properties of UV coatings, polymerizable silica hybrid nanoparticles with tertiary amine structure were prepared. Organic compound with isocyanate group was first grafted onto the surface of nanosilica by reaction of nanosilica with isophorone diisocyanate, then the nanosilica bearing isocyanate group reacted with N,N-di(3-propionic acid, 1,4,7-trimethyl-3,6-dioxaoctane-8-yl acrylate, ester) ethanolamine synthesized from tripropylene glycol diacrylate and ethanolamine. The preparation was characterized by 1H nuclear magnetic resonance (NMR) and Fourier transform infrared spectrometry (FT-IR). Thermogravimetric analysis (TGA) showed that the organic compounds grafted onto the silica decomposed from 256 °C to 650 °C and the grafting percentage based on nanosilica was 105%. The morphology analysis of nanosilica and modified silica by field-emission scanning electron microscopy (FE-SEM) indicated that the silica kept nanosized scale after modification, while the nanosilica dispersion was improved and formation of agglomerates unlikely. Determination of viscosities of coatings with modified nanosilica, it was found that viscosities of the coatings decreased in comparison with the viscosities of coatings with unmodified nanosilica. Compared with pure organic coating, the photopolymerization rate of coatings were faster when modified nanosilica was used from 1 wt% to 5 wt%, but slower when the loadings of modified nanosilica was 7 wt% because co-initiating effects of tertiary amine compound grafted on nanosilica counterbalanced the effects of UV scattering by silica on photopolymerization rate. The hardness and abrasive resistance of cured films also increased and improvement degree was different when the various amounts of modified nanosilica were used.  相似文献   

14.
Bio-detergents are new bio-friendly formulas that contain biobased ingredients, including enzymes. In the present study, alkaline protease and α-amylase were immobilized via physisorption onto silica nanoparticles (SNPs). The derivatized SNPs served as major components of a prepared bio-detergent. Alkaline protease was produced by the recombinant Bacillus subtilis cells that carry the protease genes on a multiple-copy plasmid, while α-amylase was commercially purchased. SNPs were prepared by the sol–gel method and well-characterized through the Brunauer–Emmett–Teller (BET) method, scanning electron microscopy (SEM), transmission electron microscopy (TEM), zeta potential, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The adsorption capacity of the SNPs was determined via colorimetry through the adsorption of methylene blue dye (MB), with approximately 97% adsorption achieved under the conditions employed. The Langmuir isotherm well-described the adsorption of MB on SNPs. High immobilization yield for the enzymes was obtained, and the storage stability of SNP-alkaline protease and SNP-α-amylase was good, reaching 65% and 85% of their initial activities after 6 weeks of storage at 4°C, respectively. The immobilized enzymes could be reused for 7 cycles. Additionally, the immobilized enzymes retained residual activity to a greater extent than free enzymes in simulated basic detergent solutions. SNPs containing adsorbed alkaline protease and α-amylase were mixed with a basic detergent solution, and the washing efficiency of some proteinous and starchy stains was examined through Hunter Lab spectrophotometry. The latter experiments demonstrated that the immobilized enzymes performed well during the washing process.  相似文献   

15.
The achievement of optimum adhesion between a thermoset and an inorganic material is an important goal for the composites and coatings industries. There is a growing interest in the use of structural surface modifiers, such as nanotubes, nanoparticles, and whiskers, to improve this adhesion. Here, a method for electrostatically depositing poly(ethylene imine)‐functionalized silica nanoparticles onto E‐glass fibers was developed. The deposition of 26‐nm functionalized particles onto glycidyloxypropyltrimethoxysilane (GPS)‐functionalized E‐glass fibers and then their embedding in a resin of diglycidyl ether of bisphenol A and m‐phenylene diamine increased the interfacial shear strength (IFSS) 35% over that of bare fibers and 8% over that of GPS‐functionalized fibers. IFSS was highly dependent on the particle size; the 16‐nm functionalized particles had little effect on the IFSS. When the particles size was increased to 71 and 100 nm, this led to increasingly poor IFSS values, whereas the 26‐nm particles produced the best results. Similar results were seen with the transverse flexural strength of the unidirectional composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41516.  相似文献   

16.
In the present study, compatibilization of immiscible blends of polymers was investigated based on the Pickering emulsion concept with various mixing procedures. Silica nanoparticles were incorporated into poly (1,4-cyclohexanedimethylene isosorbide terephthalate) (PEICT)/isotactic polypropylene (iPP) blends. Localization of nanoparticles was effectively modified by varying mixing procedures. Relocation of hydrophilic silica occurred in a secondary mixing procedure with the PEICT, which has relatively high affinity when primarily mixed with iPP. The final location of the silica nanoparticles was confirmed by SEM images. SEM and an optical microscope were used to follow morphological change. By simply changing the mixing procedure, the hydrophilic silica nanoparticles were able to perform the role of a morphology modifier successfully without modifying the surface characteristics. The mechanical properties and crystallization behavior were also compared depending on the surface characteristics of the silica nanoparticles and their final localization.  相似文献   

17.
Silica nanoparticles (SN) and epoxidized natural rubber (ENR) were used as binary component fillers in toughening diglycidyl ether of bisphenol A (DGEBA) cured cycloaliphatic polyamine. For a single component filler system, the addition of ENR resulted in significantly improved fracture toughness (KIC) but reduction of glass transition temperature (Tg) and modulus of epoxy resins. On the other hand, the addition of SN resulted in a modest increase in toughness and Tg but significant improvement in modulus. Combining and balancing both fillers in hybrid ENR/SN/epoxy systems exhibited improvements in the Young’s modulus and Tg, and most importantly the KIC, which can be explained by synergistic impact from the inherent characteristics associated with each filler. The highest KIC was achieved with addition of small amounts of SN (5 wt.%) to the epoxy containing 5–7.5 wt.% ENR, where the KIC was distinctly higher than with the epoxy containing ENR alone at the same total filler content. Evidence through scanning electron microscopy (SEM) and transmission optical microscopy (TOM) revealed that cavitation of rubber particles with matrix shear yielding and particle debonding with subsequent void growth of silica nanoparticles were the main toughening mechanisms for the toughness improvements for epoxy. The fracture toughness enhancement for hybrid nanocomposites involved an increase in damage zone size in epoxy matrix due to the presence of ENR and SN, which led to dissipating more energy near the crack-tip region.  相似文献   

18.
Spherical mesoporous silica particles with tunable pore size and tunable outer particle diameter in the nanometer range were successfully prepared in a water/oil phase using organic templates method. This method involves the simultaneous hydrolytic condensation of tetraorthosilicate to form silica and polymerization of styrene into polystyrene. An amino acid catalyst, octane hydrophobic-supporting reaction component, and cetyltrimethylammonium bromide surfactant were used in the preparation process. The final step in the method involved removal of the organic components by calcinations, yielding the mesoporous silica particles. Interestingly, unlike common mesoporous materials, the particle with controllable pore size (4–15 nm) and particle diameter (20–80 nm) were produced using the method described herein. The ability to control pore size was drastically altered by the styrene concentration. The outer diameter was mostly controlled by varying the concentration of the hydrophobic molecules. Relatively large organic molecules (i.e. Rhodamine B) were well-absorbed in the prepared sample. Furthermore, the prepared mesoporous silica particles may be used efficiently in various applications, including electronic devices, sensors, pharmaceuticals, and environmentally sensitive pursuits, due to its excellent adsorption properties.  相似文献   

19.
Using the DeNitrification–DeComposition (DNDC) model we compare conventional, fertilizer-driven corn–soybean rotations to alternative management scenarios which include the management of cereal rye cover crops and corn–soybean–wheat–red clover rotations. We conduct our analysis for tile-drained, silty clay loam soils of Illinois. DNDC simulations suggest that, relative to conventional rotations, a nitrate leaching reduction of 30–50% under corn and of 15–50% under soybean crops can be achieved with diversified rotations, an outcome which corroborates results from a quantitative literature review we previously conducted using a meta-analysis framework. Additionally, over a 10-year simulation, legume-fertilized systems are predicted to result in 52% lower N2O gas flux relative to fertilizer-driven systems. We identify soil organic carbon storage, legume N-fixation rate, and cereal rye cover crop growth as areas requiring further development to accurately apply DNDC to diversified cropping systems. Overall, DNDC simulation suggests diversified rotations that alternate winter and summer annuals have the potential to dramatically increase N retention in agroecosystems.  相似文献   

20.
Photofunctional polymer as silane coupling agent (PFD) was prepared by free radical copolymerization of 4‐vinylbenzyl N,N‐diethyldithiocarbamate (VBDC) and methyl methacrylate (MMA) in the presence of (3‐mercaptopropyl)trimethoxysilane (MPMS) as chain transfer agent. Next, silane (SiO2; the average diameter Dn = 192 nm) nanoparticles was surface‐modified with PFD and 3‐(trimethoxysilyl)propyl methacrylate (γ‐MPS) by covalent bond formed between silanol groups and silane coupling agents. The PFD and γ‐MPS functionalizations changed the silica surface into hydrophobic nature and provided grafting initiation sites and methacrylate terminal groups respectively. We performed the construction of hybrid nanocomposites by using these modified SiO2 nanoparticles. It was found from electron microscopy observations that SiO2 particles were packed into repeating cubic arrangements in a poly(methyl methacrylate) (PMMA) matrix such as colloidal crystals. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号