首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
自统计机器翻译技术出现以来,调序一直是语序差异显著的语言对互译系统中的关键问题,基于大规模语料训练的调序方法得到了广泛研究。目前汉蒙双语语料资源十分有限,使得现有的依赖于大规模语料和语言学知识的调序方法难以取得良好效果。该文对已有的相关研究进行了分析,提出了在有限语料条件下的汉蒙统计机器翻译调序方法。该方法依据语言学知识获取对译文语序影响显著的短语类型,研究这些短语类型的调序方案,并融入已有的调序模型实现调序的优化。实验表明该方法在有限语料条件下的效果提升显著。  相似文献   

2.
该文对基于传统统计模型的蒙汉机器翻译模型和基于神经网络机器翻译模型进行了研究。其中,神经网络翻译模型分别为基于CNN、RNN的翻译模型,并通过将所有翻译模型结果进行句子级融合得到一个融合模型。面对蒙汉翻译面临资源稀少、蒙古文形态复杂等困难,该文提出多种翻译技术,对各个模型进行改进,并对蒙古文进行形态分析与处理。在翻译效果最好的CNN模型上,采用字和短语融合训练方法;基于RNN的翻译模型除用上述方法外,还采用Giza++指导对齐技术调整RNN注意力机制;针对SMT采用了实验室提出的重对齐技术。该文对实验结果进行了对比和分析,这三种技术方法对相应系统翻译效果有显著提升。此外,蒙古文形态分析与处理对缓解数据稀疏、提升译文质量也有重要作用。  相似文献   

3.
汉英统计机器翻译中,汉语语料通常需要使用中文分词将句子切分成词序列。然而中文分词不是为统计机器翻译而开发的技术,它的分词结果不能保证对统计机器翻译的优化。近些年,一些研究试图改进中文分词方法从而达到对统计机器翻译的优化。在该文中,从另外的角度研究中文分词对统计机器翻译的影响。基本思想是利用多分词结果作为额外的语言知识,提出一种简单而有效的方法使这些知识为统计机器翻译所用,使用了一系列策略融合多分词结果,并将融合结果应用在统计机器翻译系统中。实验结果表明这种方法比没有使用多分词结果融合的系统提高1.89个BLEU分数。  相似文献   

4.
该文研究的目的是在待翻译文本未知的情况下,从已有的大规模平行语料中选取一个高质量的子集作为统计机器翻译系统的训练语料,以降低训练和解码代价。该文综合覆盖度和句对翻译质量两方面因素,提出一种从已有平行语料中获取高质量小规模训练子集的方法。在CWMT2008汉英翻译任务上的实验结果表明,利用本文的方法能够从现有大规模语料中选取高质量的子集,在减少80%训练语料的情况下达到与Baseline系统(使用全部训练语料)相当的翻译性能(BLEU值)。  相似文献   

5.
汉语分词是搭建汉语到其他语言的统计机器翻译系统的一项重要工作。从单语语料中训练得到的传统分词模型并不一定完全适合机器翻译[1]。该文提出了一种基于单语和双语知识的适应于统计机器翻译系统的分词方法。首先利用对齐可信度的概念从双语字对齐语料中抽取可信对齐集合,然后根据可信对齐集合对双语语料中的中文部分重新分词;接着将重新分词的结果和单语分词工具的分词结果相融合,得到新的分词结果,并将其作为训练语料,利用条件随机场模型训练出一个融合了单双语知识的分词工具。该文用该工具对机器翻译所需的训练集、开发集和测试集进行分词,并在基于短语的统计机器翻译系统上进行实验。实验结果表明,该文所提的方法提高了系统性能。  相似文献   

6.
维吾尔语属于阿尔泰语系,是典型的黏着语,构形词尾在维吾尔语中占很重要的地位,这与汉语差别很大。针对维吾尔语的形态特点,分析汉维统计机器翻译中维吾尔语构形词尾的作用,利用Cherio搭建一个基于层次短语的汉维统计机器翻译系统。使用词级粒度、词干级粒度、词干词尾级粒度的汉维平行语料进行对比实验,探讨不同粒度对汉维统计机器翻译系统的影响。实验结果表明,该汉维统计机器翻译系统可以提高汉维统计翻译的质量,BLEU值达到0.1972。  相似文献   

7.
维吾尔语形态较为复杂,构形词缀在维吾尔语中占有重要地位,其语法与汉语有较大差别。针对维吾尔语的形态特点,分析汉语端到维吾尔语端在统计机器翻译中维吾尔语词缀的作用,搭建基于短语的汉维统计机器翻译系统,对词级粒度、词干级粒度、最大词干级粒度、词干-词缀级粒度、词干-词尾级粒度的汉维平行语料库进行对比实验,研究不同粒度的维吾尔语对汉维机器翻译中的词语对齐质量和语言模型质量的影响。实验结果表明,在上述5种粒度的维吾尔语语料中,基于词干的维吾尔语和基于词干-词尾的维吾尔语目标端语料的翻译质量明显提高。  相似文献   

8.
神经机器翻译(NMT)是近两年刚出现的一种新型机器翻译方法,是一种端到端的翻译模型。目前,影响NMT模型效果的因素有很多,其一,当训练语料规模较大时,梯度下降更新方法会对机器的内存要求很高,因此大多研究工作中采用随机梯度下降(SGD)的方法来更新模型的训练参数,即每输入一定数量(批:batch)的训练样例,就利用局部的训练样例更新一次模型参数;其二,参数dropout可以防止系统训练时出现过拟合,提高系统泛化能力;其三,数据打乱(shuffle)也对翻译结果有着重要影响。因此,该文的研究内容主要是探索批、dropout和打乱这三个因素在训练神经机器翻译模型中对模型翻译质量的影响,并得出以下三条结论: 一是批的大小将影响神经机器翻译(NMT)模型的收敛速度,二是dropout可以提升神经机器翻译模型的性能,三是数据打乱可以在一定程度上提升神经机器翻译(NMT)系统的翻译质量。  相似文献   

9.
为提高汉-英统计机器翻译的翻译效果,提出一个基于依存句法关系的语言模型,在较成熟的基于短语翻译的统计特征下,对解码产生的NBEST候选翻译结果进行进一步约束,重新计算得分,调整NBEST候选翻译序列,以得到最佳翻译。实验以"Pharaoh"为比较基准,以500句汉英句对为测试集,最终的实验结果表明,提出的基于依存句法关系的语言模型可以在一定程度上提高汉-英统计机器翻译最佳翻译的正确率。  相似文献   

10.
提出一种改进的短语抽取算法,该算法首先考虑词对齐矩阵中一个汉语词对齐到多个维语词的情况(包括不连续),然后采用Och方法进行判断.如果满足条件则进行短语抽取.试验结果表明,改进后的短语抽取算法能够抽取出更多汉维短语对,提高短语翻译对抽取的效果.  相似文献   

11.
基于编码—解码(端到端)结构的机器翻译逐渐成为自然语言处理之机器翻译的主流方法,其翻译质量较高且流畅度较好,但依然存在词汇受限、上下文语义信息丢失严重等问题。该文首先进行语料预处理,给出一种Transformer-CRF算法来进行蒙古语词素和汉语分词的预处理方法。然后构建了基于Tensor2Tensor的编码—解码模型,为了从蒙古语语料中学习更多的语法和语义知识,该文给出了一种基于词素四元组编码的词向量作为编码器输入,解码阶段。为了进一步缓解神经网络训练时出现的词汇受限问题,该文将专有名词词典引入翻译模型来进一步提高翻译质量和译文忠实度。根据构建模型对不同长度句子进行实验对比,表明模型在处理长时依赖问题上翻译性能得到提高。  相似文献   

12.
随着科学技术的发展,以循环神经网络为基础的机器翻译方法由于翻译质量更好而逐渐取代统计机器翻译方法,特别是在国际大语种之间的互译方面,RNN在对语料编码时能够提取更好的特征,这对翻译质量好坏至关重要。然而在蒙古语这类小语种的翻译方面,由于语料不足导致的数据稀疏和RNN模型训练梯度消失等问题,很难从语料中充分获取语义关系,因此该文提出一种基于卷积神经网络CNN(convolutional neural network)的蒙汉机器翻译方法,在对源语料编码时利用池化层获取语义关系,并根据蒙古语构词特点得到句子的语义信息,再通过融合全局注意力机制的GRU循环神经网络将编码过后的源语言解码为汉语。实验结果表明,该方法在翻译准确率和训练速度两方面均优于RNN基准机器翻译方法。  相似文献   

13.
在蒙汉神经机器翻译任务中,由于语料稀少使得数据稀疏问题严重,极大影响了模型的翻译效果。该文对子字粒度切分技术在蒙汉神经机器翻译模型中的应用进行了研究。通过BPE算法将切分粒度控制在字符和词之间的子字粒度大小,将低频词切分成相对高频的子字片段,来缓解数据稀疏问题,从而在有限的数据和硬件资源条件下,更高效地提升模型的鲁棒性。实验表明,在两种网络模型中使用子字粒度切分技术,BLEU值分别提升了4.81和2.96,且随着语料的扩大,训练周期缩短效果也更加显著,说明子字粒度切分技术有助于提高蒙汉神经机器翻译效果。  相似文献   

14.
该文结合最小上下文构成代价模型,借鉴并利用统计机器翻译的方法,尝试解决蒙古文形态切分问题。基于短语的统计机器翻译形态蒙文切分模型和最小上下文构成代价模型分别对词表词和未登录词进行形态切分。前者选取了短语机器翻译系统中三个常用的模型,包括短语翻译模型、词汇化翻译模型和语言模型,最小上下文构成代价模型考虑了一元词素上下文环境和词缀N-gram上下文环境。实验结果显示 基于短语统计机器翻译形态切分模型对词表词切分,最小上下文构成代价模型对未登录词处理后,总体的切分准确率达到96.94%。此外,词素融入机器翻译系统中后,译文质量有了显著的提高,更进一步的证实了本方法的有效性和实用性。  相似文献   

15.
面向统计机器翻译的重对齐方法研究   总被引:3,自引:0,他引:3  
词对齐是统计机器翻译中的重要技术之一。该文提出了一种重对齐方法,它在IBM models获得的正反双向词对齐的基础上,确定出正反双向对齐不一致的部分。之后,对双向词对齐不一致的部分进行重新对齐以得到更好的对称化的词对齐结果。此外,该文提出的方法还可以利用大规模单语语料来强化对齐结果。实验结果表明,相比在统计机器翻译中广泛使用的基于启发信息的词对齐对称化方法,该文提出的方法可以使统计机器翻译系统得到更高的翻译准确率。  相似文献   

16.
近年来,随着人工智能和深度学习的发展,神经机器翻译在某些高资源语言对上取得了接近人类水平的效果。然而对于低资源语言对如汉语和蒙古语,神经机器翻译的效果并不尽如人意。为了提高蒙汉神经机器翻译的性能,该文基于编码器—解码器神经机器翻译架构,提出一种改善蒙汉神经机器翻译结果的方法。首先将蒙古语和汉语的词向量空间进行对齐并用它来初始化模型的词嵌入层,然后应用联合训练的方式同时训练蒙古语到汉语的翻译和汉语到蒙古语的翻译。并且在翻译的过程中,最后使用蒙古语和汉语的单语语料对模型进行去噪自编码的训练,增强编码器的编码能力和解码器的解码能力。实验结果表明该文所提出方法的效果明显高于基线模型,证明该方法可以提高蒙汉神经机器翻译的性能。  相似文献   

17.
蒙古语属于小语种,蒙古语到汉语机器翻译相关研究进展缓慢。所以,实现高质量的蒙汉机器翻译对我国少数民族地区信息化发展有着重要意义。其中,词语对齐对机器翻译质量起着至关重要的作用。该文提出了一种基于蒙古语切分的词干词缀为基本单位的蒙汉机器翻译词对齐方法。该方法利用词干词缀表和逆向最大匹配算法来实现蒙古语句子词干词缀的切分。实验结果表明对蒙古语进行词干词缀的切分能够显著提高对数线性词对齐模型的对齐质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号