首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mesoporous anodic oxidized alumina (MAOA) capillary tubes with and without a barrier layer have been synthesized by applying a pulse-sequential voltage. The single gas permeances at an elevated temperature and the thermal and hydrothermal stabilities of MAOA were investigated. A highly oriented radial mesopore channel with pore sizes from 40 to 4 nm was formed in the MAOA tubes. Micropores with sizes from 0.4 to 0.8 nm were formed in the barrier layer. The H2 permeance of MAOA with a barrier layer (barrier type) was approximately 540 times lower than that of MAOA without a barrier layer (block type) at 773 K. The H2/N2 permselectivity of the barrier type in the temperature range from 333 to 673 K was 3.4; those of the barrier type at 773 and 823 K were 4.4 and 11, respectively. On the other hand, the H2/N2 permselectivities of the block type were from 3.1 to 3.6 in the temperature range from 333 to 773 K. The H2 permeance and the H2/N2 permselectivity of the amorphous silica membrane on the block type were 1.1 × 10?7 mol/m2 · s · Pa and 40 at 773 K, respectively. MAOA synthesized by the pulse-sequential voltage method can be applied to the mesoporous support of the gas separation membrane at elevated temperatures.  相似文献   

2.
-Alumina-supported MFI zeolite membranes were modified by on-stream catalytic thermal cracking of methyldiethoxysilane (MDES) molecules inside the zeolitic channels during the separation of H2/CO2 gas mixture at 450 °C and atmospheric pressure. The MDES vapor was carried by the H2/CO2 feed gas and the effect of modification was monitored continuously through online analysis of the permeate stream. The modified membrane exhibited a significant increase in H2 selectivity over CO2 with a moderate decrease in H2 permeance. At 450 °C, the modified MFI membrane obtained a H2/CO2 permselectivity of 17.5 with H2 single gas permeance of 1.86 × 10−7 mol m−2 s−1 Pa−1 as compared to a permselectivity of 2.78 and permeance of 2.75 × 10−7 mol m−2 s−1 Pa−1 for the membrane before modification. The modified membrane also showed good performance and stability in separation of H2/CO2 gas mixture containing up to 28.4% water vapor at 450 °C and atmospheric pressure.  相似文献   

3.
Ultrananocrystalline diamond films have been grown by microwave plasma CVD using CH4/H2/Ar mixtures with N2 added in plasma in amounts up to 25%. The films were characterized with AFM, Raman, XRD, and UV–IR optical absorption spectroscopy mainly focusing on optical and thermal properties. In comparison with polycrystalline CVD diamond the UNCD are very smooth (Ra < 10 nm), have low thermal conductivity ( 0.10 W/cm K), high optical absorption ( 103 cm− 1 at 500 nm) and high concentration of bonded hydrogen ( 9 at.%). The nitrogen presence in the plasma has a profound impact on UNCD structure and properties, particularly leading to a decrease in resistivity (by 12 orders of magnitude), thermal conductivity, Tauc band gap, optical transmission and H content. The UNCD demonstrated rather good thermal stability in vacuum: the diamond phase still was present in the films subjected to annealing to 1400 °C.  相似文献   

4.
Both NO decomposition and NO reduction by CH4 over 4%Sr/La2O3 in the absence and presence of O2 were examined between 773 and 973 K, and N2O decomposition was also studied. The presence of CH4 greatly increased the conversion of NO to N2 and this activity was further enhanced by co-fed O2. For example, at 773 K and 15 Torr NO the specific activities of NO decomposition, reduction by CH4 in the absence of O2, and reduction with 1% O2 in the feed were 8.3·10−4, 4.6·10−3, and 1.3·10−2 μmol N2/s m2, respectively. This oxygen-enhanced activity for NO reduction is attributed to the formation of methyl (and/or methylene) species on the oxide surface. NO decomposition on this catalyst occurred with an activation energy of 28 kcal/mol and the reaction order at 923 K with respect to NO was 1.1. The rate of N2 formation by decomposition was inhibited by O2 in the feed even though the reaction order in NO remained the same. The rate of NO reduction by CH4 continuously increased with temperature to 973 K with no bend-over in either the absence or the presence of O2 with equal activation energies of 26 kcal/mol. The addition of O2 increased the reaction order in CH4 at 923 K from 0.19 to 0.87, while it decreased the reaction order in NO from 0.73 to 0.55. The reaction order in O2 was 0.26 up to 0.5% O2 during which time the CH4 concentration was not decreased significantly. N2O decomposition occurs rapidly on this catalyst with a specific activity of 1.6·10−4 μmol N2/s m2 at 623 K and 1220 ppm N2O and an activation energy of 24 kcal/mol. The addition of CH4 inhibits this decomposition reaction. Finally, the use of either CO or H2 as the reductant (no O2) produced specific activities at 773 K that were almost 5 times greater than that with CH4 and gave activation energies of 21–26 kcal/mol, thus demonstrating the potential of using CO/H2 to reduce NO to N2 over these REO catalysts.  相似文献   

5.
The aseptic processing of a non-Newtonian fluid in a tubular heat exchanger with no holding section was simulated numerically. Two tube diameters (1·270 × 10-2 m and 1·905 × 10-2 m), two process temperatures (410 K and 422 K) and three flow rates (1·0, 1·5 and 2·0L/min) were included in the analysis. A model liquid food with temperature dependent and shear thinning viscosity was used. For each case, the length of heating section needed to provide a required lethality (F0) of approximately 6·0 min on the center line for low-acid foods was calculated. The lethalities for Clostridium botulinum and other microorganisms of interest were calculated using the modified General Method. Increasing the temperature from 410 K to 422 K decreased the required length of the heating section by about 20 to 30% for the same average velocity. Thiaminc retention was also calculated for each case and was found to be higher for a smaller diameter tube and lower temperature. The liquid traveling near the wall was predicted to be highly overprocessed and retained less than 10% thiamine  相似文献   

6.
A dense functionally gradient SiC/SiO2 coating has been developed to improve the oxidation resistance of carbon at elevated temperatures. SiC was coated on the surface of a graphite substrate by a reaction between thermally evaporated silicon and carbon at 1400 °C. The SiO2 layer was deposited by exposing the SiC coated specimens next to a bed of Si powder in a flowing H2–H2O gas (PH2O=2.6×10−2 atm) at 1400 °C. The formed SiC/SiO2 layers were dense and had gradient compositions with good adhesion to the carbon substrate. However, as the coating thickness increased, the coating layer became cracked and delaminated from the substrate due to thermal stress. The specimens with the continuous SiC/SiO2 layer showed a remarkably improved oxidation resistance up to 1200 °C.  相似文献   

7.
Methods for preparation of carbon/silicalite-1 composite membranes have been developed. First, silicalite-1 membranes were prepared by in-situ hydrothermal synthesis on both porous alumina and metal disks. Preparation of the carbon/silicalite-1 composite membranes was accomplished by polymerizing furfuryl alcohol on the surface of the silicalite-1 membrane, followed by carbonizing the polymer layer in an inert atmosphere at 773 K. The pure silicalite-1 membrane showed no selectivity for single gases, indicating the presence of intercrystalline diffusion and viscous flow as the dominant transport mechanism. The carbon/zeolite composite membrane exhibited ideal selectivities for He/N2, CO2/N2, and N2/CH4 of 11.99, 17.12, and 3.58 at room temperature. No permeation of n-butane and i-butane for the composite membrane was detected up to temperatures of 453 K, indicating that the pore size for the composite membrane was approximately 0.4 nm. By carefully oxidizing the carbon layer in air at 623 K, the pore size of the composite membrane was adjusted such that n-butane permeation could be detected. No permeation of i-butane was apparent, suggesting that the pore size of the composite membrane had been enlarged to approximately 0.5 nm. Further oxidation of the carbon layer produced a finite n-/i-C4H4 ideal selectivity, indicating that the pore size of the membrane was now larger than 0.55 nm. Therefore, selective oxidation of the carbon layer can be used to control the pore size of the composite membrane.  相似文献   

8.
The influence of pulsed electric field (PEF) and subsequent centrifugal osmotic dehydration (OD) on the convective drying behavior of carrot is investigated. The PEF was carried out at an intensity of E = 0.60 kV/cm and a treatment duration of tPEF = 50 ms. The following centrifugal OD was performed in a sucrose solution of 65% (w/w) at 40°C for 0, 1, 2, or 4 h under 2400 × g. The drying was performed after the centrifugal OD for temperatures 40-60°C and at constant air rate (6 m3/h).

With the increase of OD duration the air drying time is reduced spectacularly. The dimensionless moisture ratio Xr = 0.1 is reached for PEF-untreated carrots after 370 min of air drying at 60°C in absence of centrifugal OD against 90 min of air drying after the 240 min of centrifugal OD. The PEF treatment reduces additionally the air drying time. The total time of dehydration operations can be shortened when OD time is optimized. For instance, the minimal time required to dehydrate untreated carrots until Xr = 0.1 is 260 min (120 min of OD at 40°C and 140 min of drying at 60°C). It is reduced to 230 min with PEF-treated carrots.

The moisture effective diffusivity Deff is calculated for the convective air drying based on Fick's law. The centrifugal OD pretreatment increases drastically the value of Deff. For instance, 4 h of centrifugal OD permitted increasing the value of Deff from 0.93 · 10-9 to 3.85 · 10-9 m2/s for untreated carrots and from 1.17 · 10-9 to 5.10 · 10-9 m2/s for PEF-treated carrots.  相似文献   

9.
Silicoaluminophosphate (SAPO) membranes with Si/Al gel ratios from 0.05 to 0.3 were synthesized by in situ crystallization onto porous, tubular stainless steel support. Pure SAPO-34 membranes were obtained when the Si/Al ratio was 0.15 or higher. The adsorbate polarizability correlated with the adsorption capacity on SAPO-34, and the amounts of gases adsorbed were in the order: CO2 > CH4 > N2 > H2. The Si/Al ratio did not affect the pore volume significantly, but it changed the CO2 and CH4 adsorption equilibrium constants. The SAPO-34 membranes effectively separated CO2 from CH4 for feed pressures up to 7 MPa. At 295 K, for a pressure drop of 138 kPa and a 50/50 feed, the CO2/CH4 selectivity was 170 for a membrane with a Si/Al gel ratio of 0.15. At 7 MPa, the CO2/CH4 selectivity was 100 and the CO2 permeance was 4 × 10−8 mol/(m2 · s · Pa) at 295 K. This membrane was also separated CO2/N2 (selectivity = 21) and H2/CH4 (selectivity = 32) mixtures at 295 K and a pressure drop of 138 kPa. Competitive adsorption and difference in diffusivities are responsible for CO2/CH4 and CO2/N2 separations, whereas the H2/CH4 separation was due to diffusivity differences. For a membrane with Si/Al gel ratio of 0.1, a mixture of SAPO-34 and SAPO-5 formed, and the CO2/CH4 selectivity was lower.  相似文献   

10.
《Drying Technology》2006,24(12):1569-1582
A new approach to experimental evaluation of mass transfer resistances from drying experiments is proposed. A composite model of ginseng root mass transfer, based on one-dimensional treatment of diffusive and convective resistances as additive components of radial mass transfer, was developed. Mass transfer resistance was evaluated from a linear relationship between measured flux and thermodynamic driving force. Partitioning of mass transfer resistance into diffusive (core and skin) and convective (air boundary layer) resistances was done by modification of boundary conditions: (a) high (3 m/s) and low (1 m/s) air velocity; (b) skin removal. Total radial mass transfer resistance was evaluated as (146 ± 6) ∗ 106 s/m at 38°C, significantly decreasing to (48 ± 1.5) ∗ 106 s/m at 50°C. Boundary resistance was evaluated as (54 ± 5) ∗ 106 s/m at 38°C and (26 ± 3) ∗ 106 s/m at 50°C in the entire range of moisture contents. Core and skin resistances were both moisture dependent: core resistance increased from initial value of (6 ± 1) ∗ 106 s/m to (61 ± 6) ∗ 106 s/m toward the end of drying, whereas skin resistance decreased from initial value of (92 ± 5) ∗ 106 s/m to (25 ± 5) ∗ 106 s/m at the endpoint of drying. However, the sum of core and skin resistances, which represents composite diffusive resistance of intact ginseng root, was constant and independent of moisture content: (91 ± 4.6) ∗ 106 s/m at 38°C and (22 ± 1.6) ∗ 106 s/m at 50°C. The relationship between mass transfer resistance R and drying rate factor k = 1/RC was used for verification of the composite model.  相似文献   

11.
Chitosan complex membranes are prepared and characterized at room temperature. They are expected to be used as proton exchange membranes. The studied membranes are cross-linked membranes with sulfuric acid; salt-complexed membranes with lithium nitrate; cross-linked and salt-complexed membranes; plasticized and salt-complexed membranes; cross-linked, plasticized, and salt-complexed membranes; and doped membranes with sulfuric acid. A fixed amount of ethylene carbonate is used as plasticizer. It is found that the ion exchange capacity and hydrogen gas permeability of all membranes is better than that of Nafion membranes. However, their proton conductivities are worse than Nafion membranes. It can be stated that ethylene carbonate does not improve conductivity. An optimum amount of lithium nitrate salt can enhance conductivity. The formation of a sulfate group in cross-linked membranes is necessary for proton conduction. The proton conductivities of 4%cross-linked and 50%LiNO3 membrane before and after acid doping are (3.11±0.40) × 10-2 and (6.64±0.11) × 10-2 S cm-1, respectively. That of Nafion is (8.02±1.19) × 10-2 S cm-1.  相似文献   

12.
A model is presented for drying of a single porous particle with superheated steam and humid air. Experimental data for spherical porous ceramic particle reported in the literature were used for the validation of the model. An inversion temperature at which the evaporation rates within superheated steam and humid air are equal was predicted. The effect of thermophysical properties of the particle (permeability 10-14 - 10-17 m2, diameter 3 × 10-3 - 10 × 10-3 m) and operating variables (gas mass flux 0.26 - 0.78 kg m-2 s-1, drying agent temperature 120-200°C) is tested. The inversion temperature is shown to be affected by the thermophysical properties of the porous particle and of the drying agent.  相似文献   

13.
An amorphous silica membrane with an excellent hydrogen/nitrogen (H2/N2) permselectivity of >10 000 and a He/H2 permselectivity of 11 was successfully synthesized on a γ-alumina (γ-Al2O3)-coated α-alumina (α-Al2O3) porous support by counter diffusion chemical vapor deposition using tetramethylorthosilicate and oxygen at 873 K. An amorphous silica membrane possessed a high H2 permeance of >1.0 × 10−7 mol·(m2·s·Pa)−1 at ≥773 K. The dominant permeation mechanism for He and H2 at 373–873 K was activated diffusion. On the other hand, that for CO2, Ar, and N2 at 373–673 K was a viscous flow. At ≥673 K, that for CO2, Ar, and N2 was activated diffusion. H2 permselectivity was markedly affected by the permeation temperature, thickness, and pore size of a γ-Al2O3 mesoporous intermediate layer.  相似文献   

14.
Sharp NO and O2 desorption peaks, which were caused by the decomposition of nitro and nitrate species over Fe species, were observed in the range of 520–673 K in temperature-programmed desorption (TPD) from Fe-MFI after H2 treatment at 773 K or high-temperature (HT) treatment at 1073 K followed by N2O treatment. The amounts of O2 and NO desorption were dependent on the pretreatment pressure of N2O in the H2 and N2O treatment. The adsorbed species could be regenerated by the H2 and N2O treatment after TPD, and might be considered to be active oxygen species in selective catalytic reduction (SCR) of N2O with CH4. However, the reaction rate of CH4 activation by the adsorbed species formed after the H2 and N2O or the HT and N2O treatment was not so high as that of the CH4 + N2O reaction over the catalyst after O2 treatment. The simultaneous presence of CH4 and N2O is essential for the high activity of the reaction, which suggests that nascent oxygen species formed by N2O dissociation can activate CH4 in the SCR of N2O with CH4.  相似文献   

15.
The wettability of nanocrystalline CVD diamond films grown in a microwave plasma using Ar/CH4/H2 mixtures with tin melt (250–850 °C) and water was studied by the sessile-drop method. The films showed the highest contact angles θ of 168 ± 3° for tin among all carbon materials. The surface hydrogenation and oxidation allow tailoring of the θ value for water from 106 ± 3° (comparable to polymers) to 5° in a much wider range compared to microcrystalline diamond films. Doping with nitrogen by adding N2 in plasma strongly affects the wetting presumably due to an increase of sp2-carbon fraction in the films and formation of C–N radicals.  相似文献   

16.
《The Journal of Adhesion》2008,84(2):125-142
Monitoring the kinetics of hydrolysis and condensation of γ-glycidoxypropyltrimethoxy-silane (γ-GPS) was carried out by NMR spectroscopy (29Si-, 13C-, and 1H-). The course of these reactions was followed in 2 wt% aqueous dilution conditions (26% D2O/74% H2O), pH 5.4, and temperatures of 26, 50, and 70°C. At ambient temperature, hydrolysis and condensation proceed at very different time scales: a few hours for the hydrolysis versus several weeks for the condensation. Distortionless Enhancement by Polarization Transfer (DEPT) sequences by 29Si- and 13C-NMR spectroscopy were optimized for determining the complete spectral assignment for each hydrolysis step, i.e., RSi(OMe)3-n(OH)n (with R = (CH2OCH)CH2OCH2CH2CH2-;andn = 1, 2, 3). A pseudo-first order rate constant for the first hydrolysis step, T0(OMe)3 + H2O → T0(OMe)2OH + MeOH, was calculated to be 0.026 min-1. Simultaneously to the condensation reactions, we have observed epoxy ring opening of the glycidyl- group. All three processes (hydrolysis, condensation, and epoxy ring opening) are dramatically accelerated with temperature increases from 26 to 70°C. The activation energy of the epoxy ring opening leading to the formation of a diol structure at the extremity of the glycidoxypropyl- chain was estimated to be 68.4 kJ/mol.  相似文献   

17.
The single gas H2 and N2 permeability of a 4 μm thick dense fcc-Pd66Cu34 layer has been studied between room temperature and 510 °C and at pressure differences up to 400 kPa. Above 50 °C the H2 flux exhibits an Arrhenius-type temperature dependence with JH2=(5.2±0.3) mol m−2 s−1 exp[(−21.3 ± 0.2) kJ mol−1/(R·T)]. The hydrogen transport rate is controlled by the bulk diffusion although the pressure dependence of the H2 flux deviates slightly from Sieverts’ law. A sudden increase of the H2 flux below 50 °C is attributed to embrittlement.  相似文献   

18.
Osmotic drying was carried out, with cylindrical samples of apple cut to a diameter-to-length ratio of 1:1, in a well-agitated large tank containing the osmotic solution at the desired temperature. The solution-to-fruit volume ratio was kept greater than 30. A modified central composite rotatable design (CCRD) was used with five levels of sucrose concentrations (34-63°Brix) and five temperatures (34-66°C). Kinetic parameters weight reduction (WR), moisture loss (ML), solids gain (SG) were considered. A polynomial regression model was developed to relate moisture loss and solids gain to process variables. A conventional diffusion model involving a finite cylinder was also used for moisture loss and solids gain, and the associated diffusion coefficients were computed. The calculated moisture diffusivity ranged from 8.20 × 10-10 to 24.26 × 10-10 m2/s and the solute diffusivity ranged from 7.82 × 10-10 to 37.24 × 10-10 m2/s. Suitable ranges of main parameters were identified for OD kinetics further study.  相似文献   

19.
A microporous zirconia membrane with hydrogen permeance about 5 × 10?8 mol·m?2·s?1·Pa?1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 kPa was fabricated via polymeric sol–gel process. The effect of calcination temperature on single gas permeance of sol–gel derived zirconia membranes was investigated. Zirconia membranes calcined at 350 °C and 400 °C showed similar single gas permeance, with permselectivities of hydrogen towards other gases, such as oxygen, nitrogen, methane, and sulfur hexafluoride, around Knudsen values. A much lower CO2 permeance (3.7 × 10?9 mol·m?2·s?1·Pa?1) was observed due to the interaction between CO2 molecules and pore wall of membrane. Higher calcination tem-perature, 500 °C, led to the formation of mesoporous structure and, hence, the membrane lost its molecular siev-ing property towards hydrogen and carbon dioxide. The stability of zirconia membrane in the presence of hot steam was also investigated. Exposed to 100 kPa steam for 400 h, the membrane performance kept unchanged in comparison with freshly prepared one, with hydrogen and carbon dioxide permeances of 4.7 × 10?8 and~3 × 10?9 mol·m?2·s?1·Pa?1, respectively. Both H2 and CO2 permeances of the zirconia membrane de-creased with exposure time to 100 kPa steam. With a total exposure time of 1250 h, the membrane presented hydrogen permeance of 2.4 × 10?8 mol·m?2·s?1·Pa?1 and H2/CO2 permselectivity of 28, indicating that the membrane retains its microporous structure.  相似文献   

20.
Experimental results describing the product distribution during the reduction of NO by H2 on Pt/Al2O3 and Pt/BaO/Al2O3 catalysts are presented in the temperature range 30–500 °C and H2/NO feed ratio range of 0.9–2.5. A microkinetic model that describes the kinetics of NO reduction by H2 on Pt/Al2O3 is proposed and most of the kinetic parameters are estimated from either literature data or from thermodynamic constraints. The microkinetic model is combined with the short monolith flow model to simulate the conversions and selectivities corresponding to the experimental conditions. The predicted trends are in excellent qualitative and reasonable quantitative agreement with the experimental results. Both the model and the experiments show that N2O formation is favored at low temperatures and low H2/NO feed ratios, N2 selectivity increases monotonically with temperature for H2/NO feed ratios of 1.2 or less but goes through a maximum at intermediate temperatures (around 100 °C) for H2/NO feed ratios 1.5 or higher. Ammonia formation is favored for H2/NO feed ratios of 1.5 or higher and intermediate temperatures (100–350 °C) buts starts to decompose at a temperature of 400 °C or higher. The microkinetic model is used to determine the surface coverages and explain the trends in the experimentally observed selectivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号