首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
聚乙烯醇水凝胶的制备及性能   总被引:8,自引:0,他引:8  
利用冷冻-解冻法制备聚乙烯醇(PVA)水凝胶,研究了不同因素对PVA水凝胶力学性能和溶胀特性的影响。结果表明,PVA水凝胶是一种典型的粘弹性材料,在一定应变区内,材料的拉伸模量随应变的增加而增大;拉伸强度和平均拉伸模量随PVA水溶液的浓度和冷冻-解冻循环次数的增加而增强,凝胶的最大拉伸强度和拉伸模量分别为2.27 MPa和0.95 MPa。溶胀特性研究显示,PVA水凝胶在生理盐水中的平衡溶胀比小于其在蒸馏水中的平衡溶胀比;凝胶的平衡溶胀比随浓度和冷冻-解冻次数的增加而下降,其下降趋势满足幂函数的变化规律;水凝胶的溶胀过程符合溶胀动力学方程。  相似文献   

2.
Graphite/poly (vinyl alcohol) (PVA) hydrogel composites, which were designed as the porous ringy skirt surrounding the transparent core of a novel artificial cornea, were prepared by using the freeze/thawing process and the particle-leaching technique. The properties of the composites, including the water content, the mechanical strength, the porous architecture and the interactions between the graphite and PVA, were investigated. The tissue responses to the composite and pure PVA hydrogel were studied by in vivo implantation in the dorsal muscles of mice. The results showed that chemical interactions were present between the graphite and PVA in the composite, which benefited the combination of the two phases and enhanced the uniform distribution of graphite particles in the PVA matrix. However, the present of graphites in the PVA hydrogels reduced the tensile strength, elongation at break and water content of the composite. Moreover, the porous graphite/PVA hydrogel composite had interconnective pore structure with high porosity and enough mechanical strength. According to the histological analysis of 1 week and 12 weeks post-implantation, the graphite/PVA hydrogel composites showed less inflammatory reactions than the PVA hydrogels at the 1 week post-implantation. Moreover, compared to pure PVA hydrogel, the graphite/PVA hydrogel composite exhibited enhanced migration and infiltration of cells, and more neovascularization and tissue ingrowth. These in vivo characteristics will be beneficial for the long-term biofixation of artificial cornea. Therefore, the porous graphite/PVA hydrogel composite has a potential to be used as novel artificial cornea skirt.  相似文献   

3.
利用冻融循环法制备了羧基化多壁碳纳米管(MWCNTs)/聚乙二醇(PEG)-聚乙烯醇(PVA)复合水凝胶。考察了不同质量配比下MWCNTs/PEG-PVA复合水凝胶的微观形貌变化,并研究了复合凝胶的溶胀性能、拉伸强度、热稳定及导电性能。结果表明,加入MWCNTs后MWCNTs/PEG-PVA复合凝胶仍具有多孔的三维网状结构但孔径尺寸变小。当MWCNTs与PVA的质量比大于1.0∶100时,MWCNTs/PEG-PVA复合凝胶的孔洞均匀性降低。随着MWCNTs量的增加,MWCNTs/PEG-PVA复合凝胶的溶胀度及拉伸强度均先升高后降低。当MWCNTs与PVA的质量比为1.0∶100时,MWCNTs/PEG-PVA复合凝胶的溶胀度达到最大(1450%),孔隙率最高(75.8%),拉伸强度及断裂伸长率达到最大值,分别为0.97 MPa和384.0%。MWCNTs的加入提高了MWCNTs/PEG-PVA复合凝胶的热稳定性,MWCNTs/PEG-PVA复合凝胶的初始热分解温度从235℃上升至260℃;随着MWCNTs量的增加,MWCNTs/PEG-PVA复合凝胶的电导率从1.10×10-6 S/cm升高至6.96×10-4 S/cm。  相似文献   

4.
采用e-Beam电子辐射和冻融循环相结合的方法制备了磺胺嘧啶银(SD-Ag)/聚乙烯醇(PVA)水凝胶。研究了制备工艺对PVA水凝胶的性能的影响。通过拉伸性能测试、吸水率检测、SEM和FT-IR等表征,考察了PVA浓度(占总质量5%~15%)、冻融与辐射处理等对PVA水凝胶拉伸强度、断裂伸长率、吸水性、凝胶含量和微观结构等的影响。结果表明:随着PVA浓度增大,PVA水凝胶的拉伸强度提高。当PVA浓度为15%、辐射剂量为25kGy时,单独辐射、辐射后冻融及冻融后辐射三种工艺制备的PVA水凝胶拉伸强度分别为0.023 MPa、0.048MPa、0.028MPa,吸水率分别为为95%、45%、63%,说明经冻融处理的水凝胶力学强度提高,吸水率有所下降。然后,选择适当的制备工艺并在PVA水凝胶中加入SD-Ag,考察了SD-Ag/PVA水凝胶的抑菌性能,抑菌活性测试结果显示,随着SD-Ag含量的增加,SD-Ag/PVA水凝胶的抑菌效果增强,而且其对革兰式阴性菌(大肠杆菌)的抑菌效果优于其对革兰式阳性菌(金黄色葡萄球菌)的抑菌效果。  相似文献   

5.
Nanohydroxyapatite reinforced poly(vinyl alcohol) gel (nano-HA/PVA gel) composites has been proposed as a promising biomaterial, especially used as an articular cartilage repair biomaterial. In this paper, nano-HA/PVA gel composites were prepared from mixing nano-HA particles modified by silicon coupling agent, with physiological saline solution (PSS) of PVA by freezing-thawing method. The effects of various factors on the mechanical properties of nano-HA/PVA gel composites were evaluated. It was shown that the mechanical behavior of nano-HA/PVA gel composites was similar to that of natural articular cartilage, which held special viscoelastic characteristics. The tensile strength and tensile modulus of the composites improved correspondingly with the increase of freezing-thawing times and concentration of PVA solution. The more concentration of PVA solution, the higher influence degree of concentration on the tensile strength of composites is. The tensile strength and tensile modulus of nano-HA/PVA hydrogel composites increased first and then decreased with the rising nano-HA content of the composites. The tensile modulus of the composites improved remarkably with the increase of elongation ratio.  相似文献   

6.
纳米纤维素具有大长径比、较高的弹性模量与比表面积及丰富的表面官能团,是一种优良的纳米增强材料。首先以纳米纤维素(CNFs)为分散介质辅助分散MXene纳米片层,制备CNF-MXene纳米复合物,并通过FTIR与XPS分析CNFs与MXene的相互作用。以此复合物为增强填料,聚乙烯醇(PVA)为基底,制备CNF-MXene/PVA复合水凝胶,进一步通过KOH溶液处理,提高复合水凝胶的力学性能,并赋予复合水凝胶优异的离子导电性。该复合水凝胶表现出优异的力学性能,其拉伸强度与断裂伸长率分别达到255.9 kPa与1098.2%,还具有高电导率(2.38 S/m)、一定的抗冻性能与灵敏的应变/压力响应性。基于该复合水凝胶组装的应变/压力柔性传感器,由于具有极低的检测极限质量(100 mg)与极快的响应时间(225 ms),可以监控脉搏跳动与喉咙发声微小震动引起的压力变化。因此,该复合水凝胶基柔性传感器非常有希望应用于未来新一代可穿戴电子、人机交互等领域。   相似文献   

7.
利用冷冻-解冻法制备了细菌纤维素(BC)/聚乙烯醇(PVA)双网络复合水凝胶,研究不同BC含量及循环周期对BC/PVA复合水凝胶力学性能和溶胀特性的影响,结果表明,随着BC含量的增多,复合水凝胶的含水率、平衡溶胀比、拉伸强度和压缩强度与普通的PVA水凝胶相比均有一定程度的提高;综合考虑,当BC含量为4%时,各项性能均达到最佳值;随着循环次数的增多,水凝胶内部的物理交联点增多,导致水凝胶的含水率下降,拉伸强度和压缩强度则有明显的上升趋势。SEM观察的结果与之前的分析是一致的。  相似文献   

8.
《Materials Letters》2007,61(8-9):1704-1706
In this paper, carbon nanotubes (CNTs) were added into poly(vinyl alcohol) (PVA) hydrogels to modify their mechanical properties. A series of CNT/PVA hybrid hydrogels were prepared by freezing/thawing method. The mechanical and swelling properties of all hybrid hydrogels are better than those of the original PVA hydrogel. Especially, for CNTP-0.5 specimen with 0.5% w/w CNTs, its tensile modulus, tensile strength and strain at break are increased by 78.2%, 94.3% and 12.7%, respectively. And its swelling behavior is different from that of the pure PVA hydrogel. Its final swelling ratios at room temperature and 310 K are increased by 35.7% and 44.9%, respectively.  相似文献   

9.
通过酸碱处理和机械研磨结合的方法制备纳米纤维素(CNFs),并利用冻融循环法分别制备了聚乙烯醇(PVA)和纳米纤维素/聚乙烯醇(CNFs/PVA)复合水凝胶,以及聚乙二醇(PEG)改性PVA和CNFs/PVA复合水凝胶。考察不同配方下复合水凝胶的微观形貌变化,并对复合水凝胶的溶胀性能、压缩强度及热稳定性能进行研究。结果表明,CNFs与PEG对PVA水凝胶的微观形貌均有改善作用,加入PEG后形成的PEG/PVA凝胶产生明显的三维网络结构。当PEG与CNFs同时加入到PVA凝胶后形成的CNFs-PEG/PVA凝胶具有均匀的互穿孔洞结构,此时复合水凝胶的孔隙率最高((67.5±4.3)%),溶胀度最好(980%),且压缩强度较PVA水凝胶也有所提升。PEG对复合凝胶的热稳定性无影响,而加入CNFs后,CNFs-PEG/PVA复合凝胶的初始热分解温度从235℃上升至300℃,显著提高了PVA凝胶的热稳定性。  相似文献   

10.
如何高效处理含油污水的问题,是如今世界科研人员共同关注的问题。聚乙烯醇(PVA)水凝胶作为高含水量及具有三维亲水网络的软材料在油水分离领域引起了广泛的关注。但是,和大多数具有超润湿性质的水凝胶一样,PVA水凝胶类油水分离材料不仅力学性能差,同时也存在化学稳定性差的问题。基于此,通过微波法制备了2D Ni-Fe金属-有机框架材料(MOF)-硅藻土(Dia)纳米材料及其PVA复合水凝胶。同时,不锈钢网经过浸泡2D Ni-Fe MOF-Dia/PVA水凝胶溶液得到2D Ni-Fe MOF-Dia/PVA水凝胶不锈钢筛网,表现出超亲水-水下超疏油性质。利用SEM、XPS分析2D Ni-Fe MOF-Dia及其复合水凝胶的化学组成和表面形貌。研究了2D Ni-Fe MOF-Dia/PVA复合水凝胶的力学性能及2D Ni-Fe MOF-Dia/PVA复合水凝胶不锈钢筛网的油水分离与乳液分离的分离效率及水通量,并对其耐盐性、耐酸耐碱性油水分离性能进行了测试。结果表明:2D Ni-Fe MOF-Dia/PVA复合水凝胶具有优异的力学性能,拉伸与压缩强度分别达到1.49 MPa及0.58 MPa,同时表现出超亲水-水下超疏油性质,2D Ni-Fe MOF-Dia/PVA不锈钢筛网的油水分离与乳液分离效率与通量分别可达99.2%和742.7 L·m?2·h?1。在酸性、碱性、盐性环境下均保持优异的分离效率与通量,并且在5次循环后,依旧保持稳定的分离效率与通量。   相似文献   

11.
Hydrogels are three-dimensional polymeric networks very similar to biological tissues and potentially useful as drug delivery systems. Poly(vinyl alcohol)-based hydrogels containing different amounts of dextran or chitosan were prepared using the freezing–thawing method. Repeated freezing–thawing cycles of a poly(vinyl alcohol) (PVA) aqueous solution lead to the formation of crystallites which act as cross-linking sites, and a hydrogel with a high capacity to swell is obtained. The effects of the two different polysaccharides on the properties of the obtained materials were investigated by differential scanning calorimetry, dynamic mechanical analysis and scanning electron microscopy. In addition the release with time of poly(vinyl alcohol) in aqueous medium, was monitored and evaluated. On the basis of the obtained results it seems that the presence of dextran favors the crystallization process of PVA, allowing the formation of a more ordered and homogeneous structure. Instead, chitosan seems to perturb the formation of PVA crystallites leading to a material with a less regular structure. © 1999 Kluwer Academic Publishers  相似文献   

12.
The purpose of the present work was to evaluate polyvinyl alcohols (PVAs) as a mucoadhesive polymer for mucoadhesive buccal tablets prepared by direct compression. Various polymerization degree and particle diameter PVAs were investigated for their usability. The tensile strength, in vitro adhesive force, and water absorption properties of the tablets were determined to compare the various PVAs. The highest values of the tensile strength and the in vitro adhesive force were observed for PVAs with a medium viscosity and small particle size. The optimal PVA was identified by a factorial design analysis. Mucoadhesive tablets containing the optimal PVA were compared with carboxyvinyl polymer and hydroxypropyl cellulose formulations. The optimal PVA gives a high adhesive force, has a low viscosity, and resulted in relatively rapid drug release. Formulations containing carboxyvinyl polymer had high tensile strengths but short disintegration times. Higher hydroxypropyl cellulose concentration formulations had good adhesion forces and very long disintegration times. We identified the optimal characteristics of PVA, and the usefulness of mucoadhesive buccal tablets containing this PVA was suggested from their formulation properties.  相似文献   

13.
In this paper, the poly(vinyl alcohol)/poly(epsilon-caprolactone)-PEG-poly(epsilon-caprolactone)/nano-hydroxyapatite (PVA/PCEC/n-HA) composite membranes were prepared by solution casting and evaporation methods. The effect of n-HA content on the properties of the composite membranes was studied. The PVA/PCEC/n-HA composite membranes were analyzed by FTIR spectroscopy, X-ray diffraction, water content measurement, contact angle, mechanical test, scanning electron microscopy. The results showed that the surface roughness of the composite membranes increased with the increase of n-HA contents. The n-HA content had obvious influence on the swelling ratio, tensile strength and elongation rate of the composite membranes. With the increase of n-HA contents, the swelling ratio increased at first, and then decreased; tensile strength and elongation rate decreased gradually. The PVA/PCEC/n-HA composite membranes may be applied in the field of tissue engineering.  相似文献   

14.
Poly(vinyl alcohol) (PVA) hydrogel has been considered as a very interesting and promising material for articular cartilage replacement. The most vital shortcoming of PVA hydrogels is that their mechanical properties are difficult to meet the requirements of articular cartilage. In the present work, blend hydrogels based on PVA and poly (vinyl pyrrolidone) (PVP) were prepared by repeated freezing and thawing method. Such hydrogel had similar internal three-dimensional structure and water content (approximately 75%) as nature articular cartilage. The mechanical and tribological properties were investigated to find out that change of mechanical and tribological properties of PVP/PVA hydrogels were significantly dependent on PVP content and freezing–thawing cycles. The blend hydrogel with 1 wt.% PVP had the best mechanical properties and the friction system consisting of such blend hydrogel and stainless steel ball exhibited a mixed lubrication regime especially under bovine serum lubrication. The results established that such hydrogel would be a novel attractive material for articular cartilage replacement.  相似文献   

15.
目的将聚乙烯醇(PVA)引入壳聚糖(CS)/有机累托石(OREC)复合体系制备插层效果、力学性能、抗紫外老化及阻隔性能良好的插层纳米复合膜。方法利用溶液流延法制备PVA-CS/OREC系列复合膜,以XRD及SEM研究复合膜的插层结构及OREC在基体中的分散性,研究复合膜的力学性能、抗紫外辐射性及水蒸气透过性。结果 OREC及PVA添加量较少时可与CS形成良好的插层结构。当OREC质量分数为2%,PVA质量分数为10%时的复合膜(标记为PVA10-CS/OREC2)插层结构最好,OREC在CS及PVA基体中分散性最好,与OREC质量分数为2%且不含PVA的复合膜(标记为CS/OREC2)相比,拉伸强度提高42.2%,断裂伸长率提高30%,水蒸气透过量降低10.2%,复合膜经紫外辐射后拉伸强度保持率、断裂伸长保持率仍达82.5%及68.2%。结论 PVA10-CS/OREC2膜可作为医用膜和药品、食品等的包装材料。  相似文献   

16.
目的用水溶PVA薄膜代替不可降解BOPP薄膜作为胶带基材。方法试验分别测试PVA和BOPP薄膜(未涂布)的拉伸强度和断裂伸长率,涂布水性压敏胶的PVA和BOPP薄膜以及涂布热熔胶的PVA薄膜的拉伸强度、断裂伸长率、初粘性和180°剥离强度。结果 BOPP薄膜的拉伸强度为34.32 N/cm,略高于PVA薄膜,但是BOPP薄膜的断裂伸长率低于PVA薄膜;BOPP胶带、PVA热熔胶带、PVA水性胶带的拉伸强度分别为48.38,63.68,32.94 N/cm,BOPP胶带的断裂伸长率同时低于PVA热熔胶带和PVA水性胶带;BOPP胶带的初粘性略高于PVA水性胶带;BOPP胶带、PVA热熔胶带、PVA水性胶带的180°剥离强度分别为1.58,6.48,2.63 N/cm。结论与BOPP胶带相比,PVA胶带的拉伸强度、断裂伸长率、初粘性和180°剥离强度均可满足封箱胶带对力学性能的要求。  相似文献   

17.
A polyacrylic acid(PAA)/gelatin(Gela)/polyvinyl alcohol(PVA)hydrogel was prepared by copolymerization,cooling,and freezing/thawing methods.This triplenetwork(TN)structure hydrogel displayed superior mechanical properties,low swelling ratio and self-healing properties,The superior mechanical properties are attributed to the triple helix association of Gela and PVA crystallites by reversible hydrogen bonding.The characterization results indicated that the fracture stress and the strain were 808 kPa and 370% respectively,while the compression strength could reach 4443 kPa and the compressive modulus was up to 39 MPa under the deformation of 90%.The hydrogen bonding in PVA contributed to maintain and improve the self-healing ability of hydrogels.Every type of hydrogels exhibited a higher swelling ratio under alkaline conditions,and the swelling ratios of PAA,PAA/PVA and PAA/Gela hydrogels were 27.71,12.30 and 9.09,respectively.The PAA/Gela/PVA TN hydrogel showed the lowest swelling ratio(6.57)among these hydrogels.These results indicate that the novel TN hydrogels possess good environmental adaptability and have potential applications in the biomedical engineering and sensor field.  相似文献   

18.
以可再生资源木质素磺酸钙和聚乙烯醇(PVA)为基料制备力学性能良好的木质素/PVA复合膜.采用单因素试验,研究了各因素对木质素/PVA复合膜力学性能及耐水性的影响.研究结果表明:甲醛、尿素和硼砂对复合膜力学性能和吸水率有显著影响.甲醛用量10g、尿素用量7g、硼砂用量2.5g时,复合膜的综合性能较好.  相似文献   

19.
In this paper, nano-sized Mg–Al layered double hydroxide (LDH) was synthesized by a fast nucleation and slow aging method. The structures of LDH were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and photon correlation spectroscopy (PCS). Poly(vinyl alcohol) (PVA) nanocomposites with different LDH loadings were prepared by water solution casting method. TEM observations show that the LDH nanoplatelets are uniformly dispersed in the PVA matrix. Tensile tests indicate that the elastic modulus and the tensile strength of PVA are improved by about 15% and 54%, respectively, when incorporating with 2 wt% LDH. The improvement of mechanical properties of PVA can be attributed to fine dispersion of LDH, good compatibility and strong interaction between PVA and LDH. In addition, the presence of LDH decreases the decomposition rates at the second stage and improves the amount of residues of PVA. Meanwhile, the transparency of the nanocomposite films is maintained compared with neat PVA.  相似文献   

20.
采用流延成膜工艺制备了CCMC/PVA共混复合膜,研究了戊二醛交联剂对复合膜的透光性能和力学性能的影响。结果表明:交联处理膜的致密性和机械性能显著提高;当戊二醛添加量为2%(质量分数),体系的pH为10,交联反应温度为85℃,交联时间为35 min时,复合膜的拉伸强度可达18.91 MPa,断裂伸长率为226%,透光率为75%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号