首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用低温燃烧合成前驱物制备出平均粒度为100 nm的AlN陶瓷粉末,比较了该粉末的常压烧结和放电等离子烧结的特性。实验表明:以合成的AlN粉末为原料,添加5%(质量比)Y2O3作为烧结助剂,在常压、流动N2气氛下1600℃保温3 h,制备出平均晶粒尺寸为4~8μm、密度为3.28 g.cm-3的AlN陶瓷;将同样的粉末不加任何烧结助剂,采用SPS技术在1600℃保温4 min,得到密度为3.26 g.cm-3的AlN陶瓷,晶粒度约为1~2μm。  相似文献   

2.
<正> 电子工业部43所超细AlN粉于1987年12月13日在合肥通过部级技术鉴定。超细AlN粉用Al_2O_3粉和C粉在氮气中高温反应而成,可用于制作高导热率的AlN陶瓷基  相似文献   

3.
AIN陶瓷基片应用的局限性   总被引:1,自引:1,他引:0  
<正> AlN陶瓷作为电子部件一种新型的导热基片,受到世界各国的重视。日、美等国在氮化铝应用市场上一直占主导和领先地位。AlN基片的热导率比Al_2O_3高约10倍,其热胀系数与硅相近,电气绝缘能力强,介电  相似文献   

4.
用于砷化镓器件的氮化铝薄膜特性   总被引:3,自引:1,他引:2  
研究了S-枪磁控反应溅射制备的AlN薄膜的晶体结构、组分以及薄膜的电学特性。用Raman散射方法检测了AlN与GaAs。SiON与GaAs的界面应力,并用AES方法对比研究了AlN/GaAs,SiON/GaAs经800C快速热退火前后两种薄膜对GaAs的掩蔽作用。高温快速热退火后,SiON保护层对GaAs掩蔽失效、界画应力大;而AlN薄膜界面应力小,能有效地防止Ga,As的外扩散。表明AlN对GaAs集成电路技术是一种非常好的绝缘介质、钝化和保护材料。  相似文献   

5.
为了解决AlN粉末极易水解的问题,使AlN陶瓷在热、电、力和光学等方面的优良性能得到广泛应用,对AlN粉末的水解机理、水解程度表征方法的研究进行了综述。归纳了AlN粉末抗水解处理的方法及存在的问题。阐述了AlN粉末抗水解处理方法未来的研究方向。  相似文献   

6.
制备了SiO2-B2O3-ZnO-Bi2O3系玻璃,并且与AlN液相烧结得到低温共烧玻璃陶瓷.分析了样品的相结构、形貌、介电常数、介质损耗、热导率和热膨胀系数等性能.结果表明AlN与SiO2-B2O3-ZnO-Bi2O3系玻璃在950℃能够很好地烧结.该陶瓷的性能取决于烧结体的致密度和玻璃含量,当w(玻璃)为40%~60%时,陶瓷具有较低的εr(3.5~4.8)和tan δ[(0.13~0.48)×10-2]、较高的λ[5.1~9.3 W/(m·K)]以及与Si相接近的αl(2.6~2.8)×1-6·K-1],适用于低温共烧基板材料.  相似文献   

7.
研究了不同引入方式的碳添加剂(内部加碳、外部加碳、内外部同时加碳)对AlN陶瓷结构与性能的影响.研究结果表明,与无碳参与时的AlN陶瓷烧结相比,内部加碳使AlN陶瓷晶粒较细小、均匀;外部加碳基本不会改变AlN陶瓷晶粒尺寸大小,但会与表面钇铝酸盐第二相发生碳热还原反应,促进坯体内第二相的排除;内外同时加碳,一方面可使AlN陶瓷晶粒均匀生长,另一方面有助于AlN陶瓷中的第二相排除,从而可获得晶粒结晶性好,晶粒与晶粒结合紧密,热导率高的AlN陶瓷.  相似文献   

8.
以AlN粉为原料,TiN粉为调节剂,添加稀土金属(Sm2O3,Y2O3,)烧结助剂在N2气氛下,采用放电等离子烧结技术在1 700℃,25 MPa下保温10 min制备了相对密度高于98%的AlN陶瓷。引入导电相TiN对AlN陶瓷电性能进行改性,AlN复合陶瓷的相对密度随着TiN含量的增加而有所下降,电阻率出现明显的导电渗流现象,渗流阀值出现在质量分数为26%左右。通过X射线衍射、扫描电镜和X射线光电子能谱分析可知:AlN烧结体含有主晶相AlN、第二相稀土金属铝酸盐和间隙相TiN,一般认为,低熔点的稀土金属铝酸盐促进了AlN陶瓷的烧结致密化,导电相TiN提供了导电的自由电子致使陶瓷体的电性能降低。  相似文献   

9.
AIN膜及其在半导体光电器件中的应用   总被引:1,自引:1,他引:0  
本文报道溅射AlN膜及其应用于半导体光电器件的实验研究结果。测定了不同条件下溅射的AlN膜厚度、淀积速率、折射率和击穿电场强度。首次用AlN膜做器件的端面保护和减反射膜以及表面钝化膜均获得成功。几种常用介质膜的实验数据对比分析表明AlN膜在半导体光电器件领域将有广阔应用前景。  相似文献   

10.
纳米AlN粉末的制备与烧结   总被引:1,自引:0,他引:1  
利用低温燃烧合成前驱物制备出平均粒度为100 nm的AlN陶瓷粉末,比较了该粉末的常压烧结和放电等离子烧结的特性.实验表明:以合成的AlN粉末为原料,添加5%(质量比)Y2O3作为烧结助剂,在常压、流动N2气氛下1600℃保温3 h,制备出平均晶粒尺寸为4~8 μm、密度为3.28 g·cm-3的AlN陶瓷;将同样的粉末不加任何烧结助剂,采用SPS技术在1600℃保温4 min,得到密度为3.26 g·cm-3的AlN陶瓷,晶粒度约为1~2μm.  相似文献   

11.
Si衬底上用反应蒸发法制备AlN单晶薄膜   总被引:1,自引:0,他引:1  
张伟  张仕国  袁骏 《半导体学报》1997,18(8):568-572
本文首次报道了在硅衬底上用反应蒸发法沉积AlN薄膜的技术.实验发现在衬底温度为470~850℃的范围内均可得到单晶薄膜,X射线衍射分析表明,薄膜只在2θ=58.9°处出现一个衍射峰,其生长晶面为(1120),是AlN的解理面.在较高的生长温度下,生长速率较低,得到的AlN薄膜具有更窄的衍射半峰宽(0.5°)、Al和N更趋向于化学计量比结合.从扫描电镜测试看出,薄膜表面平整光滑、无裂纹,说明用反应蒸发法外延生长的薄膜表面状况优良.最后,NH3对Si表面的原位清洗也作了一些讨论.  相似文献   

12.
利用硅烷改善氮化铝粉末抗水解性的研究   总被引:9,自引:2,他引:7  
用硅烷KH550对AlN作表面处理,有效地改善了AlN粉末抗水解性能。实验结果表明:处理后的AlN粉末在70℃的水浴加热条件下,可长达24 h保持pH值不变。用XRD和红外光谱对结果进行了分析,并初步地探讨了硅烷改善AlN粉末抗水解的机理。  相似文献   

13.
研究了不同引入方式的碳添加剂(内部加碳、外部加碳、内外部同时加碳)对AIN陶瓷结构与性能的影响。研究结果表明,与无碳参与时的AIN陶瓷烧结相比,内部加碳使AIN陶瓷晶粒较细小、均匀;外部加碳基本不会改变AIN陶瓷晶粒尺寸大小,但会与表面钇铝酸盐第二相发生碳热还原反应,促进坯体内第二相的排除;内外同时加碳,一方面可使AIN陶瓷晶粒均匀生长,另一方面有助于AIN陶瓷中的第二相排除,从而可获得晶粒结晶性好,晶粒与晶粒结合紧密,热导率高的AIN陶瓷。  相似文献   

14.
采用无压烧结工艺,以AlN和镁橄榄石(M2S)粉作为基体制备了纳米碳管(CNT)复合陶瓷。制备了热导率高、衰减量大及频率匹配特性良好的AlN—CNT复合微波衰减陶瓷。制备出的致密的M2S-CNT复合微波衰减材料有希望替代用在真空电子器件中的氧化铝多孔渗碳微波吸收材料。  相似文献   

15.
AlN陶瓷厚膜金属化研究进展   总被引:1,自引:0,他引:1  
简要论述了AlN陶瓷由于自身结构特点而导致的其厚膜金属化的困难、提出了解决的主要方法。阐述了AlN陶瓷厚膜金属化的三种主要结合剂(玻璃结合系;反应结合系;混合结合系)的结合机理,综述了三种主要结合剂以及AlN陶瓷厚膜金属化用金属体系的研究现状及最新进展。  相似文献   

16.
本文报道使用溅射AlN膜做半导体激光器端面反射膜和表面纯化膜的实验研究结果。测量结果表明,使用溅射AlN膜做表面纯化膜的半导体激光器性能良好。  相似文献   

17.
采用CVD、碳纳米管模板法等方法已经制成了纳米线、纳米管等多种结构;同时研制成功多种一维纳米结构的阵列。用CVD方法合成的AlN纳米线直径为几十纳米、纳米线长度可以达到几十微米;用碳纳米管模板法可以控制AlN纳米线的直径。同时,AlN纳米线也已经在场致发射的研究领域得到应用。综述了AlN一维纳米结构材料的制备方法,分析研究了AlN一维纳米结构的合成反应机理和材料特性。  相似文献   

18.
AlN陶瓷表面化学镀镍工艺   总被引:1,自引:0,他引:1  
采用化学镀镍的方法对AlN陶瓷进行金属化。研究了陶瓷表面粗化工艺、化学镀溶液成分等对镀层的影响,得到了最佳工艺:采用500 g.L-1的NaOH溶液对AlN陶瓷进行30 min腐蚀粗化,可得到理想的粗化表面;采用的十二烷基硫酸钠作为镀液表面活性剂,浓度为100 mg.L-1,可减少镀层中的氢含量,使得镀层更加致密。将金属化后的AlN陶瓷与SiCp/Al复合材料焊接,剪切强度可达到110 MPa。  相似文献   

19.
为研究基于碳化硅(SiC)陶瓷封装的高功率半导体激光器的散热性能,将其与常用的氮化铝(AlN)陶瓷进行对比,使用基于结构函数法的热阻仪分别测量SiC和AlN封装F-mount器件的热阻值,得到SiC器件的总热阻约为3.0℃·W~(-1),AlN的约为3.4℃·W~(-1),SiC器件的实测热阻值比AlN器件低14.7%,实验结果表明SiC过渡热沉具有较好的散热性能。实验进一步测试了两种过渡热沉封装器件的输出性能,在16A连续电流注入时,915nm波段的SiC器件单管输出功率为15.9 W,AlN为15 W,测试结果显示SiC封装的器件具有更高的功率输出水平。  相似文献   

20.
首先利用化学工艺制备出烧结助剂Y2O3均匀混合的AlN粉体及BN均匀包覆AlN的复合粉体。利用无压烧结制备出AlN陶瓷及BN—AlN基复相陶瓷。通过对陶瓷显微结构、热性能及微波介电性能的研究发现,通过化学工艺,将BN包覆到AlN粉体表面,制备出显微结构均匀的AlN-20%BN(质量比)复相陶,其热导率为78.1w/m·K,在Ka波段介电常数为7.2、介电损耗最小值为13×10^-4通过材料化学工艺,将烧结助剂Y2O3均匀添加到AlN基体中,制备出热导率为154.2w/m·K,在Ka波段介电常数为8.5、介电损耗最小值为9.3×10^-4的AlN陶瓷材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号