首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
TCR determinants overexpressed by autopathogenic Th1 cells can naturally induce a second set of TCR-specific regulatory T cells. We addressed the question of whether immune regulation could be induced naturally in a genetically restricted model in which a major portion of TCR-specific regulatory T cells expressed the same target TCR BV8S2 chain as the pathogenic T cells specific for myelin basic protein (MBP). We found vigorous T cell responses to BV8S2 determinants in naive mice that could be further potentiated by vaccination with heterologous BV8S2 proteins, resulting in the selective inhibition of MBP-specific Th1 cells and protection against experimental encephalomyelitis. Moreover, coculture with BV8S2-specific T cells or their supernatants reduced proliferation, IFN-gamma secretion, and encephalitogenic activity of MBP-specific T cells. These results suggest that immune regulation occurs through a nondeletional cytokine-driven suppressive mechanism.  相似文献   

2.
The use of altered peptide ligands (APL) to modulate T cell responses has been suggested as a means of treating T cell-mediated autoimmune disorders. We have assessed the therapeutic potential of TCR antagonist peptides in autoimmunity using murine experimental autoimmune encephalomyelitis (EAE) as a model. The Tg4 transgenic mouse expresses an MHC class II-restricted TCR specific for the immunodominant encephalitogenic epitope of myelin basic protein, Ac1-9 (acetylated N-terminal nonamer). We have used T cell lines derived from Tg4 mice to define the TCR contact residues within Ac1-9. APL with appropriate substitutions at the primary TCR contact residue were effective antagonists of Tg4 T cells. These antagonist APL, however, were found to induce EAE in susceptible, nontransgenic strains of mice. Underlying this, the Ac1-9-specific T cell repertoire of normal mice, rather than reflecting the Tg4 phenotype, showed considerable diversity in fine specificity and was able to respond to the Tg4 antagonist APL. Defining antagonist APL in vitro using T cell clones, therefore, was not a reliable approach for the identification of APL with EAE-suppressing potential in vivo. Our findings highlight the complexities of the autoreactive T cell repertoire and have major implications for the use of APL in autoimmune diseases.  相似文献   

3.
Autoimmune diseases can result from the breakdown of regulation and subsequent activation of self-antigenic determinant-reactive T cells. During the evolution of the autoimmune response to myelin basic protein (MBP) in B10.PL mice, several distinct T cell populations expand: the effectors mediating experimental autoimmune encephalomyelitis (EAE) are MBP-reactive, CD4+, and predominantly TCR Vbeta8.2+; in addition, at least two regulatory populations can be detected--one comprised of Vbeta14+ CD4 T cells, reactive to a framework region 3 determinant on the Vbeta8.2 chain, and a second that is CD8+ and reactive to another Vbeta8.2 determinant. The combined action of these two regulatory cell types controls disease-causing effectors, resulting in spontaneous recovery from disease. In this report, we reveal that the cytokine secretion pattern of TCR peptide-specific regulatory CD4 T cells can profoundly influence whether a type 1 or type 2 population predominates among MBP-specific CD4 effectors. The priming of type 1 regulatory T cells results in deviation of the Ag-specific effector T cell population in a type 2 direction and protection from disease. In contrast, induction of type 2 regulatory T cells results in exacerbation of EAE, poor recovery, and an increased frequency of type 1 effectors. Thus, the encephalitogenic potential of the MBP-reactive effector population is crucially and dominantly influenced by the cytokine secretion phenotype of regulatory CD4 T cells. These findings have important implications in understanding peripheral tolerance to self-Ags as well as in the design of TCR-based therapeutic approaches.  相似文献   

4.
Experimental autoimmune encephalomyelitis (EAE) serves as a rodent model of the autoimmune disease multiple sclerosis. In mice, EAE is induced by immunizing with spinal cord homogenate, components of the myelin sheath, such as myelin basic protein (MBP) or proteolipid protein (PLP), or peptides derived from these components. EAE can be induced in H-2u or (H-2u x H-2s)F1 mice with the N-terminal peptide of MBP, Ac1-11. Coimmunization with Ac1-11 and Ac1-11[4A], an analog in which lysine at position four is substituted with alanine, prevents EAE. The mechanism of inhibition has not been elucidated, but probably does not work through MHC blockade, T cell anergy or clonal elimination of encephalitogenic T cells. We have isolated T cell clones and hybridomas from (PL/J x SJL/J)F1 mice immunized with either Ac1-11 alone or Ac1-11 and Ac1-11[4A] and analysed these cells for differences in their T cell receptor repertoire and in vitro response. Although T cells elicited by coinjection of Ac1-11 and Ac1-11[4A] expressed TCR that used V alpha and Vbeta gene elements similar to those elicited by Ac1-11 alone, they differed in the sequences of the junctional region of the alpha chain. Most of these T cells also responded less well to Ac1-11 in vitro, suggesting that coinjection of Ac1-11 and Ac1-11[4A] preferentially activates T cells bearing TCR of different affinity for Ac1-11 bound to I-A(u), and which may therefore be less encephalitogenic. Furthermore, our results show that a more diverse repertoire of V alpha and Vbeta genes are elicited by Ac1-11 in (PL/J x SJL/J)F1 mice compared to PL/J and B10.PL mice, providing further evidence that a restricted TCR repertoire is not required for the development of autoimmune disease.  相似文献   

5.
We have analysed the relative T cell receptor (TCR) BV gene usage in T cells from hearts and spleens of CBA/HJ mice chronically infected with the Tulahuén strain of Trypanosoma cruzi. During chronic infection, CBA/HJ mice recruit T cells at the major site of inflammation (i.e. the heart), with over-representation of certain TCRBV gene subfamilies (TCRBV8S2 and TCRBV8S3). In contrast, no signal or a very weak message from a limited number of T cells was recorded from one heart of the control group. No alteration of TCRBV distribution was recorded in spleens of chronically infected CBA/HJ. Our findings indicate that there is a preferential TCRBV gene usage in the T cell response in the hearts of chronically infected mice. Furthermore, the pattern of CDR3 lengths in inflammatory T cells was altered.  相似文献   

6.
Vaccination or treatment of Lewis rats with TCR V beta 8 peptides can prevent or reverse the clinical signs of experimental autoimmune encephalomyelitis (EAE) which is mediated predominantly by V beta 8.2+ CD4+/CD45R lo T cells. However, rats protected or treated with V beta 8 peptides still developed histological lesions in the spinal cord (SC), even though they remained clinically well. We sought to discern phenotypic changes characteristic of these SC infiltrating lymphocytes. In particular, we focused on whether the immunoregulatory mechanism induced by TCR peptides caused a reduction of V beta 8.2+ T cells, or induced changes in CD45R lo or hi/CD4+ subpopulations that have been associated respectively with EAE induction or recovery. In the V beta 8 peptide vaccinated rats there was a dramatic decrease in the number of V beta 8.2+ T cells isolated from the SC early in disease. During the recovery phase, however, the number of V beta 8.2+ SC T cells was similar in protected and control groups; in contrast, there was striking reduction in the number and size of CD45R hi/CD4+ T cells in the protected animals. In rats treated with V beta 8.2 peptide, no changes were observed in the number of SC V beta 8.2+ T cells or expression of V beta 8.2 message, but similar to vaccinated rats, there was a marked decrease in the number of CD45R hi/CD4+ T cells. These data suggest that vaccination with TCR peptides prevented the initial influx of encephalitogenic V beta 8.2+ T cells into the central nervous system (CNS), whereas treatment appeared to inactivate V beta 8.2+ T cells already present in the CNS. In both cases, TCR peptide-induced inhibition of the encephalitogenic T cells apparently preempted the need for CD45R hi/CD4+ T cells that may normally be necessary to resolve the disease.  相似文献   

7.
T cell receptor (TCR)-recognizing regulatory cells, induced after vaccination with self-reactive T cells or TCR peptides, have been shown to prevent autoimmunity. We have asked whether this regulation is involved in the maintenance of peripheral tolerance to myelin basic protein (MBP) in an autoimmune disease model, experimental autoimmune encephalomyelitis (EAE). Antigen-induced EAE in (SJL x B10.PL)F1 mice is transient in that most animals recover permanently from the disease. Most of the initial encephalitogenic T cells recognize MBP Ac1-9 and predominantly use the TCR V beta 8.2 gene segment. In mice recovering from MBP-induced EAE, regulatory CD4+ T cells (Treg) specific for a single immunodominant TCR peptide B5 (76-101) from framework region 3 of the V beta 8.2 chain, become primed. We have earlier shown that cloned B5-reactive Treg can specifically downregulate responses to Ac1-9 and also protect mice from EAE. These CD4 Treg clones predominantly use the TCR V beta 14 or V beta 3 gene segments. Here we have directly tested whether deletion/blocking of the Treg from the peripheral repertoire affects the spontaneous recovery from EAE. Treatment of F1 mice with appropriate V beta-specific monoclonal antibodies resulted in an increase in the severity and duration of the disease; even relapses were seen in one-third to one-half of the Treg-deleted mice. Interestingly, chronic disease in treated mice appears to be due to the presence of Ac1-9-specific T cells. Thus, once self-tolerance to MBP is broken by immunization with the antigen in strong adjuvant, TCR peptide-specific CD4 Treg cells participate in reestablishing peripheral tolerance. Thus, a failure to generate Treg may be implicated in chronic autoimmune conditions.  相似文献   

8.
Vaccination of mice with activated autoantigen-reactive CD4(+) T cells (T cell vaccination, TCV) has been shown to induce protection from the subsequent induction of a variety of experimental autoimmune diseases, including experimental allergic encephalomyelitis (EAE). Although the mechanisms involved in TCV-mediated protection are not completely known, there is some evidence that TCV induces CD8(+) regulatory T cells that are specific for pathogenic CD4(+) T cells. Previously, we demonstrated that, after superantigen administration in vivo, CD8(+) T cells emerge that preferentially lyse and regulate activated autologous CD4(+) T cells in a T cell receptor (TCR) Vbeta-specific manner. This TCR Vbeta-specific regulation is not observed in beta2-microglobulin-deficient mice and is inhibited, in vitro, by antibody to Qa-1. We now show that similar Vbeta8-specific Qa-1-restricted CD8(+) T cells are also induced by TCV with activated CD4(+) Vbeta8(+) T cells. These CD8(+) T cells specifically lyse murine or human transfectants coexpressing Qa-1 and murine TCR Vbeta8. Further, CD8(+) T cell hybridoma clones generated from B10.PL mice vaccinated with a myelin basic protein-specific CD4(+)Vbeta8(+) T cell clone specifically recognize other CD4(+) T cells and T cell tumors that express Vbeta8 and the syngeneic Qa-1(a) but not the allogeneic Qa-1(b) molecule. Thus, Vbeta-specific Qa-1-restricted CD8(+) T cells are induced by activated CD4(+) T cells. We suggest that these CD8(+) T cells may function to specifically regulate activated CD4(+) T cells during immune responses.  相似文献   

9.
Human and murine natural T (NT) cells, also referred to as NK1.1+ or NK T cells, express TCR with homologous V regions (hAV24/BV11 and mAV14/BV8, respectively) and conserved "invariant" TCR AVAJ junctional sequences, suggesting recognition of closely related antigens. Murine NT cells recognize CD1-expressing cells and are activated in a CD1-restricted fashion by several synthetic alpha-glycosylceramides, such as alpha-GalCer. Here we studied the reactivity of human T cells against CD1d+ cells pulsed or not with alpha-GalCer and other related ceramides. CD1d-restricted recognition of alpha-GalCer was a general and specific feature of T cell clones expressing both BV11 and canonical AV24AJ18 TCR chains. Besides, human and murine NT cells showed the same reactivity patterns against a set of related glycosylceramides, suggesting a highly conserved mode of recognition of these antigens in humans and rodents. We also identified several AV24BV11 T cell clones self reactive against CD1+ cells of both hemopoietic and nonhemopoietic origin, suggesting the existence of distinct NT cell subsets differing by their ability to recognize self CD1d molecules.  相似文献   

10.
Vaccination with synthetic TCR peptides from the BV5S2 complementarity-determining region 2 (CDR2) can boost significantly the frequency of circulating CD4+ peptide-specific Th2 cells in multiple sclerosis (MS) patients, with an associated decrease in the frequency of myelin basic protein (MBP)-reactive Th1 cells and possible clinical benefit. To evaluate the immunogenicity of CDR2 vs other regions of the TCR, we vaccinated seven MS patients with overlapping BV5S2 peptides spanning amino acids 1-94. Six patients responded to at least one of three overlapping or substituted CDR2 peptides possessing a core epitope of residues 44-52, and one patient also responded to a CDR1 peptide. Of the CDR2 peptides, the substituted (Y49T)BV5S2-38-58 peptide was the most immunogenic but cross-reacted with the native sequence and had the strongest binding affinity for MS-associated HLA-DR2 alleles, suggesting that position 49 is an MHC rather than a TCR contact residue. Two MS patients who did not respond to BV5S2 peptides were immunized successfully with CDR2 peptides from different BV gene families overexpressed by their MBP-specific T cells. Taken together, these results suggest that a widely active vaccine for MS might well involve a limited set of slightly modified CDR2 peptides from BV genes involved in T cell recognition of MBP.  相似文献   

11.
12.
The mechanisms responsible for peripheral CD8 T cell tolerance to foreign Ags remain poorly understood. In this study we have characterized the state of CD8 T cell tolerance induced in F5 TCR transgenic mice by multiple peptide injections in vivo. The tolerant state of CD8 T cells is characterized by impaired proliferative responses, increased sensitivity to cell death, and failure to acquire cytotoxic effector function after in vitro antigenic challenge. In vivo monitoring of CD8 T cell proliferation using 5-carboxyfluorescein diacetate succinimidyl ester showed that a large subset of the tolerant T cell population failed to divide in response to peptide. TCR down-regulation could not account for this loss of responsiveness to Ag since recombination-activating gene-1 (RAG-1)-/-F5 CD8 T cell responses were similar to those of RAG-1(-/-)F5 x RAG-1(-/-)F1 T lymphocytes, which express lower levels of the transgenic TCR. Analysis of early signal transduction in tolerant CD8 T cells revealed high basal levels of cytoplasmic calcium as well as impaired calcium mobilization and tyrosine phosphorylation after cross-linking of CD3epsilon and CD8alpha. Together these data indicate that repeated exposure to soluble antigenic peptide in vivo can induce a state of functional tolerance characterized by defective TCR signaling, impaired proliferation, and increased sensitivity to cell death.  相似文献   

13.
T cell receptor (TCR) vaccination in rats prevents the development of experimental allergic encephalomyelitis (EAE), an animal model of multiple sclerosis. The mechanism of this potential immunotherapy was examined by vaccinating mice with an immunogenic peptide fragment of the variable region of the TCR V beta 8.2 gene. Another immunogen that usually induces an immune response mediated by V beta 8.2+ T cells was subsequently inhibited because specific clonal unresponsiveness (anergy) had been induced. Depletion of CD8+ cells before TCR peptide vaccination blocked such inhibition. Thus, the clonal anergy was dependent on CD8+ T cells, and such immunoregulatory T cells may participate in the normal course of EAE.  相似文献   

14.
In organ-specific autoimmune diseases, T cells involved in the disease development bear a particular type of TCR and infiltrate the target organ predominantly. However, it is difficult to identify disease-inducing T cells in peripheral blood lymphocytes (PBL) because such T cells are very few in number in a large pool of unrelated T cells. In the present study, we demonstrate that CDR3 spectratyping can identify experimental autoimmune encephalomyelitis (EAE)-specific patterns (oligoclonal expansion of Vbeta8.2 with the shortest CDR3) in PBL at the preclinical and clinical stages of acute EAE. Analysis of nucleotide and predicted amino acid sequences of Vbeta8.2 CDR3 of spectratype-derived clones revealed that CASSDSSYEQYFGPG, which is one of the representative sequences of encephalitogenic T cell clones, constituted the predominant population in both PBL and spinal cord T cells. In chronic relapsing EAE, the EAE-specific spectratype pattern in PBL was observed during the 1 st and 2nd attacks, but not at the remission and full recovery stage. These findings indicate that the spectratyping pattern in PBL reflects the disease activity of acute and chronic relapsing EAE. Thus, CDR3 spectratyping using PBL can be used for diagnosis and assessment of T cell-mediated autoimmune diseases and is applicable to human autoimmune diseases.  相似文献   

15.
The development of T cell-mediated autoimmune diseases hinges on the balance between effector and regulatory mechanisms. Using two transgenic mouse lines expressing identical myelin basic protein (MBP)-specific T cell receptor (TCR) genes, we have previously shown that mice bearing exclusively MBP-specific T cells (designated T/R-) spontaneously develop experimental autoimmune encephalomyelitis (EAE), whereas mice bearing MBP-specific T cells as well as other lymphocytes (designated T/R+) did not. Here we demonstrate that T/R- mice can be protected from EAE by the early transfer of total splenocytes or purified CD4(+) T cells from normal donors. Moreover, whereas T/R+ mice crossed with B cell-deficient, gamma/delta T cell-deficient, or major histocompatibility complex class I-deficient mice did not develop EAE spontaneously, T/R+ mice crossed with TCR-alpha and -beta knockout mice developed EAE with the same incidence and severity as T/R- mice. In addition, MBP-specific transgenic mice that lack only endogenous TCR-alpha chains developed EAE with high incidence but reduced severity. Surprisingly, two-thirds of MBP-specific transgenic mice lacking only endogenous TCR-beta chains also developed EAE, suggesting that in T/R+ mice, cells with high protective activity escape TCR-beta chain allelic exclusion. Our study identifies CD4(+) T cells bearing endogenous alpha and beta TCR chains as the lymphocytes that prevent spontaneous EAE in T/R+ mice.  相似文献   

16.
Induction of mucosal tolerance by inhalation of soluble peptides with defined T cell epitopes is receiving much attention as a means of specifically down-regulating pathogenic T cell reactivities in autoimmune and allergic disorders. Experimental autoimmune encephalomyelitis (EAE) induced in the Lewis rat by immunization with myelin basic protein (MBP) and Freund's adjuvant (CFA) is mediated by CD4+ T cells specific for the MBP amino acid sequences 68-86 and 87-99. To further define the principles of nasal tolerance induction, we generated three different MBP peptides (MBP 68-86, 87-99 and the non-encephalitogenic peptide 110-128), and evaluated whether their nasal administration on day -11, -10, -9, -8 and -7 prior to immunization with guinea pig MBP (gp-MBP) + CFA confers protection to Lewis rat EAE. Protection was achieved with the encephalitogenic peptides MBP 68-86 and 87-99, MBP 68-86 being more potent, but not with MBP 110-128. Neither MBP 68-86 nor 87-99 at doses used conferred complete protection to gp-MBP-induced EAE. In contrast, nasal administration of a mixture of MBP 68-86 and 87-99 completely blocked gp-MBP-induced EAE even at lower dosage compared to that being used for individual peptides. Rats tolerized with MBP 68-86 + 87-99 nasally showed decreased T cell responses to MBP reflected by lymphocyte proliferation and IFN-gamma ELISPOT assays. Rats tolerized with MBP 68-86 + 87-99 also had abrogated MBP-reactive IFN-gamma and tumor necrosis factor-alpha mRNA expression in lymph node cells compared to rats receiving MBP 110-128 nasally, while similar low levels of MBP-reactive transforming growth factor-beta and IL-4 mRNA expressing cells were observed in the two groups. Nasal administration of MBP 68-86 + 87-99 only slightly inhibited guinea pig spinal cord homogenate-induced EAE, and passive transfer of spleen mononuclear cells from MBP 68-86 + 87-99-tolerized rats did not protect na?ve rats from EAE. Finally, we show that nasal administration of MBP 68-86 + 87-99 can reverse ongoing EAE induced with gp-MBP, although higher doses are required compared to the dosage needed for prevention. In conclusion, nasal administration of encephalitogenic MBP peptides can induce antigen-specific T cell tolerance and confer incomplete protection to gp-MBP-induced EAE, and MBP 68-86 and 87-99 have synergistic effects. Non-regulatory mechanisms are proposed to be responsible for tolerance development after nasal peptide administration.  相似文献   

17.
BACKGROUND: Mixed hematopoietic chimerism induced with a nonmyeloablative conditioning regimen leads to donor-specific transplantation tolerance. Analyses of specific Vbeta-bearing T-cell families that recognize endogenous superantigens demonstrated that donor-specific tolerance is due mainly to an intrathymic deletional mechanism in these mixed chimeras. However, superantigens are not known to behave as classical transplantation antigens. We therefore used T-cell receptor (TCR) transgenic (Tg) recipients expressing a clonotypic TCR specific for an allogeneic major histocompatibility complex antigen to further assess deletional tolerance. METHODS: 2C TCR Tg mice (H2b), whose Tg TCR recognizes major histocompatibility complex class I Ld, were used as recipients of Ld+ bone marrow cells after conditioning with depleting anti-CD4 and CD8 monoclonal antibodies, 3 Gy whole-body irradiation, and 7 Gy thymic irradiation. Chimerism and deletion of CD8+ 2C recipient T cells was evaluated by flow cytometry and by immunohistochemical staining. Tolerance was tested with in vitro cell-mediated lympholysis assays and in vivo by grafting with donor skin. RESULTS: Intrathymic and peripheral deletion of 2C+ CD8-single-positive T cells was evident in mixed chimeras, and deletion correlated with the presence of donor-type cells with dendritic morphology in the thymus, and with chimerism in lymphohematopoietic tissues. Chimeras showed tolerance to the donor in cell-mediated lympholysis assays and specifically accepted donor skin grafts. CONCLUSIONS: Tolerance to transplantation antigens is achieved through intrathymic deletion of donor-reactive T cells in mixed chimeras prepared with a nonmyeloablative conditioning regimen and allogeneic bone marrow transplantation.  相似文献   

18.
T cells infiltrating the iris/ciliary body of Lewis rats with anterior uveitis (AU) that had been induced by myelin basic protein (MBP) immunization were previously found to share surface markers common to the T cells that cause experimental autoimmune encephalomyelitis (EAE). To determine whether these AU-associated T cells are in fact the same as those that infiltrate the central nervous system to cause EAE, we examined TCR V gene expression in T cells infiltrating the anterior chamber in rats with AU. As with EAE, we found a biased expression of Vbeta8.2 and Valpha2 in the iris/ciliary body and, although one would expect an influx of nonspecific inflammatory T cells, these biases were still evident at the peak of AU. An analysis of the TCR Vbeta8.2 and Valpha2 sequences derived from the iris/ciliary body demonstrated the presence of the same complementarity determining region 3 motifs found in MBP-specific T cells that are pathogenic for EAE and found in T cells derived from the central nervous system of rats with EAE. Finally, T cells isolated from the iris/ciliary body of rats with AU were found to proliferate in a specific fashion to MBP Ags. Thus, it appears that MBP-specific T cells are pathogenic for AU as well as EAE in the Lewis rat. In addition, the long-term presence of this highly restricted MBP response in the iris/ciliary body indicates that distinct immunoregulatory mechanisms exist in the environment of the eye. This provides an interesting model with which to address questions pertaining to the nature of T cells infiltrating the eye and their regulation during EAE and other systemic diseases.  相似文献   

19.
Induction of neonatal T cell tolerance to soluble antigens requires the use of incomplete Freund's adjuvant (IFA). The side effects that could be associated with IFA and the ill-defined mechanism underlying neonatal tolerance are setbacks for this otherwise attractive strategy for prevention of T cell-mediated autoimmune diseases. Presumably, IFA contributes a slow antigen release and induction of cytokines influential in T cell differentiation. Immunoglobulins (Igs) have long half-lives and could induce cytokine secretion by binding to Fc receptors on target cells. Our hypothesis was that peptide delivery by Igs may circumvent the use of IFA and induce neonatal tolerance that could confer resistance to autoimmunity. To address this issue we used the proteolipid protein (PLP) sequence 139-151 (hereafter referred to as PLP1), which is encephalitogenic and induces experimental autoimmune encephalomyelitis (EAE) in SJL/J mice. PLP1 was expressed on an Ig, and the resulting Ig-PLP1 chimera when injected in saline into newborn mice confers resistance to EAE induction later in life. Mice injected with Ig-PLP1 at birth and challenged as adults with PLP1 developed T cell proliferation in the lymph node but not in the spleen, whereas control mice injected with Ig-W, the parental Ig not including PLP1, developed T cell responses in both lymphoid organs. The lymph node T cells from Ig-PLP1 recipient mice were deviated and produced interleukin (IL)-4 instead of IL-2, whereas the spleen cells, although nonproliferative, produced IL-2 but not interferon (IFN)-gamma. Exogenous IFN-gamma, as well as IL-12, restored splenic proliferation in an antigen specific manner. IL-12-rescued T cells continued to secrete IL-2 and regained the ability to produce IFN-gamma. In vivo, administration of anti-IL-4 antibody or IL-12 restored disease severity. Therefore, adjuvant-free induced neonatal tolerance prevents autoimmunity by an organ-specific regulation of T cells that involves both immune deviation and a new form of cytokine- dependent T cell anergy.  相似文献   

20.
To characterize the nature of autoimmune disease-inducing T cells in the target organ, oligoclonal expansion of spinal cord T cells of Lewis rats with experimental autoimmune encephalomyelitis (EAE) was examined by complementarity-determining region 3 (CDR3) size spectratyping. It is known that TCR of in vitro-established myelin basic protein-specific T cell clones and lines have a short CDR3 and that the amino acid sequence in this region is highly preserved. On the basis of these findings, we analyzed 22 spectratypes of the TCR beta-chain (Vbeta1-20). Among them, only Vbeta8.2 and Vbeta17 showed oligoclonal expansion of TCR with a short CDR3 at the early stage of EAE. More interestingly, the spectratype profile of Vbeta8.2 seen at the early stage was preserved throughout the course of EAE, whereas that of Vbeta17 became more diverse at the peak stage of the disease. Analysis of nucleotide and predicted amino acid sequences of Vbeta8.2 CDR3 derived from the spectratypes revealed that the clones with CASSDSSYEQYFGPG, which is one of the representative sequences of encephalitogenic T cell clones, constituted the predominant population not only at the early stage but also at the peak and recovery stages (71, 71, and 60%, respectively). These findings imply that although the phenotype of T cells in the target organ diversifies as the autoimmune disease progresses, disease-associated TCR spectratype(s) are preserved throughout the course of the disease. Thus, CDR3 size spectratyping is a powerful tool for the screening of disease-inducing T cells in an autoimmune disease of unknown pathomechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号