首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have tested the effect of m-nitrobenzyl alcohol (m-NBA) as a method to increase the average charge state of protonated gas-phase molecular ions generated by ESI from tryptic peptides and phosphopeptides. Various concentrations of m-NBA were added to the mobile phases of a liquid chromatography system coupled to an ESI tandem mass spectrometer. Addition of just 0.1% m-NBA changed the average charge state for the identified tryptic BSA peptides from 2.2+ to 2.6+. As a result, the predominant charge states for BSA peptides were changed from 2+ to > or =3+. To evaluate the benefits of peptide charge enhancement, the ETD fragmentation efficiency and Mascot peptide score were compared for BSA peptides in charge states 2+ and 3+. In all cases but one, triply charged peptides fragmented more efficiently than the analogues 2+ peptide ions. On average, triply charged peptides received a 68% higher Mascot score (24 units) than doubly charged peptides. m-NBA also increased the average charge state of phosphopeptides by up to 0.5 charge unit. The ease of implementation and the analytical benefits of charge enhancement of tryptic peptides by addition of m-NBA to the LC solvents suggest the general application of this reagent in proteomic studies that employ ETD-MS/MS and related techniques.  相似文献   

2.
Enhanced charging, or supercharging, of analytes in electrospray ionization mass spectrometry (ESI MS) facilitates high resolution MS by reducing an ion mass-to-charge (m/z) ratio, increasing tandem mass spectrometry (MS/MS) efficiency. ESI MS supercharging is usually achieved by adding a supercharging reagent to the electrospray solution. Addition of these supercharging reagents to the mobile phase in liquid chromatography (LC)-MS/MS increases the average charge of enzymatically derived peptides and improves peptide and protein identification in large-scale bottom-up proteomics applications but disrupts chromatographic separation. Here, we demonstrate the average charge state of selected peptides and proteins increases by introducing the supercharging reagents directly into the ESI Taylor cone (in-spray supercharging) using a dual-sprayer ESI microchip. The results are comparable to those obtained by the addition of supercharging reagents directly into the analyte solution or LC mobile phase. Therefore, supercharging reaction can be accomplished on a time-scale of ion liberation from a droplet in the ESI ion source.  相似文献   

3.
Electrospray ionization (ESI) of native proteins results in a narrow distribution of low protonation states. ESI for these folded species proceeds via the charged residue mechanism. In contrast, ESI of unfolded proteins yields a wide distribution of much higher charge states. The current work develops a model that can account for this effect. Recent molecular dynamics simulations revealed that ESI for unfolded polypeptide chains involves protein ejection from nanodroplets, representing a type of ion evaporation mechanism (IEM). We point out the analogies between this IEM, and the dissociation of gaseous protein complexes after collisional activation. The latter process commences with unraveling of a single subunit, in concert with Coulombically driven proton transfer. The subunit then separates from the residual complex as a highly charged ion. We propose that similar charge equilibration events accompany the IEM of unfolded proteins, thereby causing the formation of high ESI charge states. A bead chain model is used for examining how charge is partitioned as protein and droplet separate. It is shown that protein ejection from differently sized ESI droplets generates a range of protonation states. The predicted behavior agrees well with experimental data.  相似文献   

4.
Cech NB  Enke CG 《Analytical chemistry》2000,72(13):2717-2723
Nonpolar regions in biological molecules are investigated as a determining factor governing their electrospray ionization (ESI) mass spectrometric response. Response is compared for a series of peptides whose C-terminal residue is varied among amino acids with increasingly nonpolar side chains. Increased ESI response is observed for peptides with more extensive nonpolar regions. The basis for this increase is examined by comparing values of nonpolar surface area and Gibbs free energy of transfer for the different amino acid residues. Comparisons of response with octadecylamine are also made, and this highly surface-active ion is observed to outcompete all other analytes in ESI response. These observations are rationalized on the basis of the equilibrium partitioning model, which is used successfully to fit experimental data throughout the concentration range for several two-analyte systems. This model suggests that because excess charge exists on ESI droplet surfaces, an analyte's relative affinity for the droplet surface determines its relative ESI response. Increased nonpolar character, which leads to enhanced affinity for the surface phase, results in more successful competition for excess charge and higher ESI response.  相似文献   

5.
Wang NH  Lee WL  Her GR 《Analytical chemistry》2011,83(16):6163-6168
A strategy based on postcolumn electrophoretic mobility control (EMC) was developed to alleviate the adverse effect of trifluoroacetic acid (TFA) on the liquid chromatography-mass spectrometry (LC-MS) analysis of peptides. The device created to achieve this goal consisted of a poly(dimethylsiloxane) (PDMS)-based junction reservoir, a short connecting capillary, and an electrospray ionization (ESI) sprayer connected to the outlet of the high-performance liquid chromatography (HPLC) column. By apply different voltages to the junction reservoir and the ESI emitter, an electric field was created across the connecting capillary. Due to the electric field, positively charged peptides migrated toward the ESI sprayer, whereas TFA anions remained in the junction reservoir and were removed from the ionization process. Because TFA did not enter the ESI source, ion suppression from TFA was alleviated. Operation of the postcolumn device was optimized using a peptide standard mixture. Under optimized conditions, signals for the peptides were enhanced 9-35-fold without a compromise in separation efficiency. The optimized conditions were also applied to the LC-MS analysis of a tryptic digest of bovine serum albumin.  相似文献   

6.
Electrospray-assisted laser desorption/ionization (ELDI) is a soft ionization method for mass spectrometry (MS) and combines features of both electrospray ionization (ESI) and matrix-assisted laser desorption/ionization to generate ESI-like multiply charged molecules. The ELDI process is based on merging ESI-generated, charged droplets with particles UV laser desorbed from dried or wet sample deposits. We previously reported that ELDI is amenable for MS-based protein identification of large peptides and small proteins using top-down and bottom-up techniques (Peng, I. X.; Shiea, J.; Ogorzalek Loo, R. R.; Loo, J. A. Rapid Commun. Mass Spectrom. 2007, 21, 2541-2546). We have extended our studies by applying collisionally activated dissociation and electron-transfer dissociation MS ( n ) to protein analysis and show that ELDI is capable of multistage MS to MS (4) for top-down characterization of large proteins such as 29 kDa carbonic anhydrase. Multiply charged proteins generated by the ELDI mechanism can be shifted to higher charge by increasing the organic content in the ESI solvent to denature the protein molecules, or by adding m-nitrobenzyl alcohol to the ESI solvent. Furthermore, we introduce "reactive-ELDI", which supports chemical reactions during the ELDI process. Preliminary data for online disulfide bond reduction using dithiothreitol on oxidized glutathione and insulin show reactive-ELDI to be effective. These data provide evidence that the laser-desorbed particles merge with the ESI-generated charge droplets to effect chemical reactions prior to online MS detection. This capability should allow other chemical and enzymatic reactions to be exploited as online protein characterization tools, as well as extending them to flexible, spatially resolved tissue screening and imaging. Also, these reactive-ELDI disulfide reduction experiments enable direct top-down protein identification for proteomic study, side stepping laborious, time-consuming sample preparation steps such as in-solution reduction and alkylation.  相似文献   

7.
The ultrahigh resolution and sensitivity of electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry have for the first time been exploited for the characterization of highly sialylated glycoproteins, using human alpha-1-acid glycoprotein as the model compound. An alternative approach to the widely used high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization (MALDI) assays is described. This new method does not require any enzymatic or chemical digestion (removal of sialyl groups or deglycosylation), chemical derivatization (introduction of chromophore groups), or preliminary chromatographic separation (HPLC or electrophoresis). Following ESI and accumulation of ions in a hexapole ion guide, ions are injected into the ICR cell. A selected mass window from the overall ion population is isolated and axialized prior to detection. After acquisition and Fourier transform of the transient signal the resulted spectrum is evaluated in order to determine the charge state of the detected ions and the isotope pattern of the measured protein glycoform. The presence of ions from the same glycoform with different charge states was confirmed. The advantages and limitations of the technique are discussed. Future prospects and possible applications are indicated.  相似文献   

8.
Electrosonic spray ionization (ESSI), a variant on electrospray ionization (ESI), employs a traditional micro ESI source with supersonic nebulizing gas. The high linear velocity of the nebulizing gas provides efficient pneumatic spraying of the charged liquid sample. The variable electrostatic potential can be tuned to allow efficient and gentle ionization. This ionization method is successfully applied to aqueous solutions of various proteins at neutral pH, and its performance is compared to that of the nanospray and micro ESI techniques. Evidence for efficient desolvation during ESSI is provided by the fact that the peak widths for various multiply charged protein ions are an order of magnitude narrower than those for nanospray. Narrow charge-state distributions compared to other ESI techniques are observed also; for most of the proteins studied, more than 90% of the protein ions can be accumulated in one charge state using ESSI when optimizing conditions. The fact that the abundant charge state is normally as low or lower than that recorded by ESI or nanospray indicates that folded protein ions are generated. The sensitivity of the ionization technique to high salt concentrations is comparable to that of nanospray, but ESSI is considerably less sensitive to high concentrations of organic additives such as glycerol or 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris base). Noncovalent complexes are observed in the case of myoglobin, protein kinase A/ATP complex, and other proteins. The extent of dissociation of protein ions in ESSI is comparable to or even smaller than that in the case of nanospray, emphasizing the gentle nature of the method. The unique features of ESSI are ascribed to very efficient spraying and the low internal energy supplied to the ions. Evidence is provided that the method is capable of generating fully desolvated protein ions at atmospheric pressure. This allows the technique to be used for the study of ion-molecule reactions at atmospheric pressure and examples of this are shown.  相似文献   

9.
We have developed an atmospheric pressure ionization technique called liquid matrix-assisted laser desorption electrospray ionization (liq-MALDESI) for the generation of multiply charged ions by laser desorption from liquid samples deposited onto a stainless steel sample target biased at a high potential. This variant of our previously reported MALDESI source does not utilize an ESI emitter to postionize neutrals. Conversely, we report desorption and ionization from a macroscopic charged droplet. We demonstrate high mass resolving power single-acquisition FT-ICR-MS analysis of peptides and proteins ranging from 1 to 8.6 kDa at atmospheric pressure. The liquid sample acts as a macroscopic charged droplet similar to those generated by electrospray ionization, whereby laser irradiation desorbs analyte from organic matrix containing charged droplets generating multiply charged ions. We have observed a singly charged radical cation of an electrochemically active species indicating oxidation occurs for analytes and therefore water; the latter would play a key role in the mechanism of ionization. Moreover, we demonstrate an increase in ion abundance and a concurrent decrease in surface tension with an increase in the applied potential.  相似文献   

10.
Combining electrospray ionization (ESI) and solvent assisted inlet ionization (SAII) provides higher ion abundances over a wide range of concentrations for peptides and proteins than either ESI or SAII. In this method, a voltage is applied to a union connector linking tubing from a solvent delivery device and the fused silica capillary, used with SAII, inserted into a heated inlet tube of an Orbitrap Exactive mass spectrometer (MS). The union can be metal or polymeric and the voltage can be applied directly or contactless. Solution flow rates from less than a 1 μL min(-1) to over 100 μL min(-1) can be accommodated. It appears that the voltage is only necessary to provide charge separation in solution, and the hot MS inlet tube and the high velocity of gas through the tube linking atmospheric pressure and vacuum provides droplet formation. As little as 100 V produces an increase in ion abundance for certain compounds using this method relative to no voltage. Interestingly, the total ion current observed with SAII and this electrosprayed inlet ionization (ESII) method are very similar for weak acid solutions, but with voltage on, the ion abundance for peptides and proteins increase as much as 100-fold relative to other compounds in the solution being analyzed. Thus, switching between SAII (voltage off) and ESII (voltage on) provides a more complete picture of the solution contents than either method alone.  相似文献   

11.
Sequence verification and mapping of posttranslational modifications require nearly 100% sequence coverage in the "bottom-up" protein analysis. Even in favorable cases, routine liquid chromatography-mass spectrometry detects from protein digests peptides covering 50-90% of the sequence. Here we investigated the reasons for limited peptide detection, considering various physicochemical aspects of peptide behavior in liquid chromatography-Fourier transform mass spectrometry (LC-FTMS). No overall correlation was found between the detection probability and peptide mass. In agreement with literature data, the signal increased with peptide hydrophobicity. Surprisingly, the pI values exhibited an opposite trend, with more acidic tryptic peptides detected with higher probability. A mixture of synthesized peptides of similar masses confirmed the hydrophobicity dependence but showed strong positive correlation between pI and signal response. An explanation of this paradoxal behavior was found through the observation that more acidic tryptic peptide lengths tend to be longer. Longer peptides tend to acquire higher average charge state in positive mode electrospray ionization than more basic but shorter counterparts. The induced-current detection in FTMS favors ions in higher charge states, thus providing the observed pI-FTMS signal anticorrelation.  相似文献   

12.
The first examples of highly charged ions observed under intermediate pressure (IP) vacuum conditions are reported using laser ablation of matrix/analyte mixtures. The method and results are similar to those obtained at atmospheric pressure (AP) using laserspray ionization (LSI) and/or matrix assisted inlet ionization (MAII). Electrospray ionization (ESI), LSI, and MAII are methods operating at AP and have been shown, with or without the use of a voltage or a laser, to produce highly charged ions with very similar ion abundance and charge states. A commercial matrix-assisted laser desorption/ionization ion mobility spectrometry (IMS) mass spectrometry (MS) instrument (SYNAPT G2) was used for the IP developments. The necessary conditions for producing highly charged ions of peptides and small proteins at IP appear to be a pressure drop region and the use of suitable matrixes and laser fluence. Ionization to produce these highly charged ions under the low pressure conditions of IP does not require specific heating or a special inlet ion transfer region. However, under the current setup, ubiquitin is the highest molecular weight protein observed. These findings are in accord with the need to provide thermal energy in the pressure drop region, similar to LSI and MAII, to improve sensitivity and extend the types of compounds that produce highly charged ions. The practical utility of IP-LSI in combination with IMS-MS is demonstrated for the analysis of model mixtures composed of a lipid, peptides, and a protein. Further, endogenous multiply charged peptides are observed directly from delipified mouse brain tissue with drift time distributions that are nearly identical in appearance to those obtained from a synthesized neuropeptide standard analyzed by either LSI- or ESI-IMS-MS at AP. Efficient solvent-free gas-phase separation enabled by the IMS dimension separates the multiply charged peptides from lipids that remained on the delipified tissue. Lipid and peptide families are exceptionally well separated because of the ability of IP-LSI to produce multiple charging.  相似文献   

13.
The potential benefits of ultra-low flow electrospray ionization (ESI) for the analysis of phosphopeptides in proteomics was investigated. First, the relative flow dependent ionization efficiency of nonphosphorylated vs multiplyphosphorylated peptides was characterized by infusion of a five synthetic peptide mix with zero to four phophorylation sites at flow rates ranging from 4.5 to 500 nL/min. Most importantly, similar to what was found earlier by Schmidt et al., it has been verified that at flow rates below 20 nL/min the relative peak intensities for the various peptides show a trend toward an equimolar response, which would be highly beneficial in phosphoproteomic analysis. As the technology to achieve liquid chromatography separation at flow rates below 20 nL/min is not readily available, a sheathless capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) strategy based on the use of a neutrally coated separation capillary was used to develop an analytical strategy at flow rates as low as 6.6 nL/min. An in-line preconcentration technique, namely, transient isotachophoresis (t-ITP), to achieve efficient separation while using larger volume injections (37% of capillary thus 250 nL) was incorporated to achieve even greater sample concentration sensitivities. The developed t-ITP-ESI-MS strategy was then used in a direct comparison with nano-LC-MS for the detection of phosphopeptides. The comparison showed significantly improved phosphopeptide sensitivity in equal sample load and equal sample concentration conditions for CE-MS while providing complementary data to LC-MS, demonstrating the potential of ultra-low flow ESI for the analysis of phosphopeptides in liquid based separation techniques.  相似文献   

14.
Electrospray ionization mass spectrometry (ESI-MS) is a commonly used tool for characterizing conformational changes of proteins in solution. Different conformations can be distinguished on the basis of their ESI charge state distributions. ESI-MS studies carried out under semidenaturing conditions result in bi- or multimodal distributions that reflect the presence of coexisting conformers. This study explores whether the concentration ratios of these species in solution are reflected in the measured ion intensities. Experiments on two model proteins, lysozyme and myoglobin, reveal that non-native polypeptide chains tend to result in a much stronger signal response than natively folded species. The measured ion intensity ratios can differ from the actual concentration ratios by as much as 2 orders of magnitude. It is proposed that the higher ionization efficiency of unfolded proteins is due to their partially hydrophobic character, which results in a larger surface activity and facilitates protein transfer into ion-producing progeny droplets. Conversely, natively folded proteins have a lower affinity for the air/liquid interface, such that ionization of these conformers is suppressed. The extent of ion suppression is strongly dependent on the experimental conditions such as flow rate and protein concentration, which determine if ESI occurs in a charge deficient or a charge surplus regime. These aspects should be taken into account for the design of ESI-MS-based protein folding experiments and for studies that use ion intensity ratios for the determination of protein-ligand binding affinities.  相似文献   

15.
Direct mass spectrometric quantification of peptides and proteins is compromised by the wide variabilities in ionization efficiency which are hallmarks of both the MALDI and ESI ionization techniques. We describe here the implementation of a fluorescence detection system for measurement of the UV-excited intrinsic fluorescence (UV-IF) from peptides and proteins just prior to their exit and electrospray ionization from an ESI capillary. The fluorescence signal provides a quantifiable measure of the amount of protein or peptide present, while direct or tandem mass spectrometric analysis (MS/MS) on the ESI-generated ions provides information on identity. We fabricated an inexpensive, modular fluorescence excitation and detection device utilizing an ultraviolet light-emitting diode for excitation in a ~300 nL fluorescence detection cell integrated into the fused-silica separation column. The fluorescence signal is linear over 3 orders of magnitude with on-column limits of detection in the low femtomole range. Chromatographically separated intact proteins analyzed using UV-IF prior to top-down mass spectrometry demonstrated sensitive detection of proteins as large as 77 kDa.  相似文献   

16.
A solution additive has been discovered that can be used to measure the number of basic sites in a peptide or protein using electrospray ionization (ESI) mass spectrometry. Addition of millimolar amounts of perchloric acid (HClO(4)) to aqueous solutions that contain peptides or proteins results in the noncovalent adduction of HClO(4) molecules to the multiply charged ions formed by ESI. For 18 oligopeptides and proteins, ranging in molecular weight from 0.5 to 18.3 kDa, the sum of the number of protons plus maximum number of HClO(4) molecules adducted to the lower charge state ions is equal to the number of basic sites in the molecule. This method provides a rapid means of obtaining information about the composition of a peptide or protein and does not require high-resolution measurements or any instrumental or experimental modifications.  相似文献   

17.
A simple method for direct coupling of gas chromatography (GC) with electrospray ionization mass spectrometry (ESI/MS) has been developed. The outlet of the GC capillary column was placed between the ESI needle and the atmospheric pressure ionization (API) source of a mass spectrometer. The ionization occurs via dissolution of neutral compounds into the charged ESI droplet followed by ion evaporation or via a gas-phase proton transfer reaction between a protonated solvent molecule and an analyte. The mass spectra of organic volatile compounds showed abundant protonated molecules with little fragmentation, being very similar to those produced by normal liquid ESI. The quantitative performance of the system was evaluated by determining the limit of detection (LOD), linearity ( r (2)), and repeatability (RSD). The GC-ESI/MS method was shown to be stable, providing high sensitivity and good quantitative performance.  相似文献   

18.
The operation of an electrospray ion source in the positive ion mode involves charge-balancing oxidation reactions at the liquid/metal interface of the sprayer capillary. One of these reactions is the electrolytic oxidation of water. The protons generated in this process acidify the analyte solution within the electrospray capillary. This work explores the effects of this acidification on the electrospray ionization (ESI) mass spectrum of the protein cytochrome c (cyt c). In aqueous solution containing 40% propanol, cyt c unfolds around pH 5.6. Mass spectra recorded under these conditions, using a simple ESI series circuit, display a bimodal charge-state distribution that reflects an equilibrium mixture of folded and unfolded protein in solution. These spectra are not strongly affected by electrochemical acidification. An "external loop" is added to the ESI circuit when the metal needle of the sample injection syringe is connected to ground. The resulting circuit represents two coupled electrolytic cells that share the ESI capillary as a common anode. Under these conditions, the rate of charge-balancing oxidation reactions is dramatically increased because the ion source has to supply electrons for both, the external circuit and the ESI circuit. The analytical implications of this effect are briefly discussed. Mass spectra of cyt c recorded with the syringe needle grounded are shifted to higher charge states, indicating that electrochemical acidification has caused the protein to unfold in the ion source. The acidification can be suppressed by increasing the flow rate and lowering the electrolyte concentration of the solution and by using an electrolyte that acts as redox buffer. The observed acidification is similar for sprayer capillaries made of platinum and stainless steel. Removal of the protective oxide layer on the stainless steel surface results in effective redox buffering for a few minutes.  相似文献   

19.
Direct analysis of samples using atmospheric pressure ionization (API) provides a more rapid method for analysis of volatile and semivolatile compounds than vacuum solids probe methods and can be accomplished on commercial API mass spectrometers. With only a simple modification to either an electrospray (ESI) or atmospheric pressure chemical ionization (APCI) source, solid as well as liquid samples can be analyzed in seconds. The method acts as a fast solids/liquid probe introduction as well as an alternative to the new direct analysis in real time (DART) and desorption electrospray ionization (DESI) methods for many compound types. Vaporization of materials occurs in the hot nitrogen gas stream flowing from an ESI or APCI probe. Ionization of the thermally induced vapors occurs by corona discharge under standard APCI conditions. Accurate mass and mass-selected fragmentation are demonstrated as is the ability to obtain ions from biological tissue, currency, and other objects placed in the path of the hot nitrogen stream.  相似文献   

20.
Proteins from Escherichia coli were isolated based on their ability to bind DNA and digested in-solution with trypsin; the resulting peptides were separated using HPLC and subsequently analyzed using MALDI TOF/TOF and ESI Q-TOF instruments. Various properties of the peptides observed with the two ionization techniques were compared taking into account the differences between the mass analyzers. This empirical analysis of a data set containing hundreds of peptides and thousands of individual amino acids supports some of the currently held notions regarding the complementary nature of the two ionization processes. Specifically, ESI tends to favor the identification of hydrophobic peptides whereas MALDI tends to lead to the identification of basic and aromatic species. Findings from the present study suggest that ESI and MALDI may be complementary due to the biases of the two ionization techniques for certain classes of amino acids. From a practical standpoint, these biases indicate that, for the present at least, analyses must be performed on both types of instruments in order to gain the most information possible out of a given set of samples in a proteomics study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号