首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
A simple displacement-based 3-node, 18-degree-of-freedom flat triangular plate/shell element LDT18 is proposed in this paper for linear and geometrically nonlinear finite element analysis of thin and thick laminated composite plates. The presented element is based on the first-order shear deformation theory (FSDT), and the total Lagrangian approach is employed to formulate the element for geometrically nonlinear analysis. The deflection and rotation functions of the element boundary are obtained from the Timoshenko’s laminated composite beam functions, hence convergence to the thin plate solution can be achieved theoretically and shear-locking problem is avoided naturally. The plane displacement interpolation functions of the Airman’s triangular membrane element with drilling degrees of freedom are taken as the in-plane displacements of the element. Numerical examples demonstrate that the present element is accurate and efficient for linear and geometrically nonlinear analysis of thin to moderately thick laminated composite plates.  相似文献   

3.
This work presents an isogeometric finite element formulation based on Bézier extraction of the non-uniform rational B-splines (NURBS) in combination with a generalized unconstrained higher-order shear deformation theory (UHSDT) for laminated composite plates. The proposed approach relaxes zero-shear stresses at the top and bottom surfaces of the plates and no shear correction factors are required. A weak form of static, free vibration and transient response analyses for laminated composite plates is then established and is numerically solved using isogeometric Bézier finite elements. NURBS can be written in terms of Bernstein polynomials and the Bézier extraction operator. IGA is implemented with the presence of C°-continuous Bézier elements which allow to easily incorporate into existing finite element codes without adding many changes as the former IGA. As a result, all computations can be performed based on the basis functions defined previously as the same way in finite element method (FEM). Numerical results performed over static, vibration and transient analysis show high efficiency of the present method.  相似文献   

4.
《Computers & Structures》2006,84(8-9):624-639
A 4-node finite element for the analysis of laminated composite plates with monoclinic layers, as it occurs for example in piezoelectric applications, is developed. The element is built through the linked interpolation scheme proposed by Taylor and Auricchio [Int J Numer Meth Eng 1993;36:3057–66] and is a generalization of the element presented in [Auricchio F, Sacco E. A mixed-enhanced finite-element for the analysis of laminated composite plates. Int J Numer Meth Eng 1999;44:1481–1504]. Starting from a first-order shear deformation theory (FSDT), a mixed-enhanced variational formulation is considered. It includes as primary variables the resultant shear stresses as well as enhanced incompatible modes, which are introduced to improve in-plane deformations. Bubble functions for rotation degrees of freedom and functions linking transversal displacement to rotations are employed. The solvability of the variational formulation is proved whereas effectiveness and convergence of the proposed finite element are confirmed through several numerical applications. Finally, numerical results are compared with the corresponding analytical solutions as well as to other finite-element solutions.  相似文献   

5.
A p-version finite element model based on degenerate shell element is proposed for the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with moderately large deflections and small rotations being accounted for in the sense of von Karman hypothesis. The material model is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized for anisotropic materials by introducing the parameters of anisotropy. The model is also based on the equivalent-single layer laminate theory. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several comparative points of view in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic zone.  相似文献   

6.
In this study, a buckling analysis was carried out of a woven–glass–polyester laminated composite plate with an circular/elliptical hole, numerically. In the analysis, finite element method (FEM) was applied to perform parametric studies on various plates based on the shape and position of the elliptical hole. This study addressed the effects of an elliptical/circular cutout on the buckling load of square composite plates. The laminated composite plates were arranged as symmetric cross-ply [(0°/90°)2]s and angle-ply [(15°/−75°)2]s, [(30°/−60°)2]s, [(45°/−45°)2]s. The results show that buckling loads are decreased by increasing both c/a and b/a ratios. The increasing of hole positioned angle cause to decrease of buckling loads. Additionally, the cross-ply composite plate is stronger than all other analyzed angle-ply laminated plates.  相似文献   

7.
Optimization procedures are presented that consider the static and dynamic characteristic constraints for laminated composite plates and hybrid laminated composite plates subject to a concentrated load on the center of the plate. The design variables adopted are ply angle or ply thickness. Considered constraints are deflection, natural frequency and specific damping capacity. Using a recursive linear programming method, nonlinear optimization problems are solved, and by introducing the design scaling factor, the number of iterations is reduced significantly. Relating interactive optimization procedures with the finite element method analysis, various hybrid composite plates with arbitrary boundary conditions can be designed optimally. In the optimization procedure, verification of analysis and design of the laminated composite plates are compared with a previous paper. Various design results are presented on laminated composite plates and hybrid laminated composite plates.  相似文献   

8.
《Computers & Structures》1987,25(2):241-249
In view of the increasing interest in using composite materials for aerospace structures, the analysis of laminated composite plates becomes essential. A three-dimensional eight-node hybrid stress finite element method is developed for the analysis of laminated plates. The hybrid stress model is based on the modified complementary energy principle and takes into account the transverse shear deformation effects. The displacement field is interpolated through shape functions and nodal displacements. All three displacement components are assumed to vary linearly through the thickness of each lamina. The stress field is interpolated through assumed stress polynomials with 55 stress parameters for each lamina. All six stresses are included and satisfy the homogeneous equilibrium equations. The validity of the hybrid stress finite element model is determined by comparing the predicted numerical results with the existing three-dimensional elasticity solutions. Excellent accuracy and fast convergence are observed in the numerical results.  相似文献   

9.
The static, vibration, and buckling analysis of axisymmetric circular plates using the finite element method is discussed. For the static analysis, the stiffness matrix of a typical annular plate element is derived from the given displacement function and the appropriate constitutive relations. By assuming that the static displacement function, which is an exact solution of the circular plate equation ?2?2W = 0, closely represents the vibration and buckling modes, the mass and stability coefficient matrices for an annular element are also constructed. In addition to the annular element, the stiffness, mass, and stability coefficient matrices for a closure element are also included for the analysis of complete circular plates (no center hole). As an extension of the analysis, the exact displacement function for the symmetrical bending of circular plates having polar orthotropy is also given.  相似文献   

10.
In this paper, a split least-squares characteristic mixed finite element method is proposed for solving nonlinear nonstationary convection–diffusion problem. By selecting the least-squares functional property, the resulting least-squares procedure can be split into two independent symmetric positive definite sub-schemes. The first sub-scheme is for the unknown variable u, which is the same as the standard characteristic Galerkin finite element approximation. The second sub-scheme is for the unknown flux σ. Theoretical analysis shows that the method yields the approximate solutions with optimal accuracy in L 2(Ω) norm for the primal unknown and in H(div; Ω) norm for the unknown flux, respectively. Some numerical examples are given to confirm our theory results.  相似文献   

11.
《Computers & Structures》2006,84(22-23):1538-1546
This paper presents a finite element model based on the Multiparticle Model of Multilayered Materials (M4) developed in Institut Navier-LAMI during the last years. The laminated plate is considered as a superposition of Reissner plates coupled by interfacial stresses. An eight-node multiparticle element is developed here. This element has 5n degrees of freedom per node (n is the layer’s number of the laminate). A finite element program called MPFEAP has been developed for the implementation of the multiparticle element. The proposed finite element model is capable of computing interlaminar stresses and other localized effect which is impossible with classical 2D finite element model. Some examples of free edge problem are provided to illustrate the accuracy of the present element in predicting interlaminar stresses.  相似文献   

12.
The results of a three-dimensional, geometrically nonlinear, finite-element analysis of the bending of cross-ply laminated anisotropie composite plates are presented. Individual laminae are assumed to be homogeneous, orthotropic and linearly elastic. A fully three-dimensional isoparametric finite element with eight nodes (i.e. linear element) and 24 degrees of freedom (three displacement components per node) is used to model the laminated plate. The finite element results of the linear analysis are found to agree very well with the exact solutions of cross-ply laminated rectangular plates under sinusiodal loading. The finite element results of the three-dimensional, geometrically nonlinear analysis are compared with those obtained by using a shear deformable, geometrically nonlinear, plate theory. It is found that the deflections predicted by the shear deformable plate theory are in fair agreement with those predicted by three-dimensional elasticity theory; however stresses were found to be not in good agreement  相似文献   

13.
The lamination arrangements of moderately thick laminated composite plates for optimal dynamic characteristics are studied via a constrained multi-start global optimization technique. In the optimization process, the dynamical analysis of laminated composite plates is accomplished by utilizing a shear deformable laminated composite finite element, in which the exact expressions for determining shear correction factors were adopted and the modal damping model constructed based on an energy concept. The optimal layups of laminated composite plates with maximum fundamental frequency or modal damping are then designed by maximizing the frequency or modal damping capacity of the plate via the multi-start global optimization technique. The effects of length-to-thickness ratio, aspect ratio and number of layer groups upon the optimum fiber orientations or layer group thicknesses are investigated by means of a number of examples of the design of symmetrically laminated composite plates.  相似文献   

14.
《Computers & Structures》2001,79(26-28):2321-2333
This paper deals with the development of a family of higher order B-spline finite strip models applied to the static and free vibration analysis of laminated plates, with arbitrary shape and lay-ups, loading and boundary conditions. The lamination scheme can be such that the embedded and/or surface bonded piezoelectric actuating and sensing layers are included. The structure is discretised in a specified number of strips, and the geometry and displacement components of each strip are represented by interpolating functions that are products of linear or cubic B-spline, and linear or quadratic Lagrange functions along the y and x orthonormal directions. The accuracy and relative performance of the proposed discrete models are compared and discussed among the developed and alternative models.  相似文献   

15.
A novel computational approach for the dynamic analysis of a large scale rigid–flexible multibody system composed of composite laminated plates is proposed. The rigid parts in the system are described through the Natural Coordinate Formulation (NCF) and the flexible bodies in the system are modeled via the finite elements of Absolute Nodal Coordinate Formulation (ANCF), which can lead to a constant mass matrix for the derived system equation of motion. For modeling composite laminated plates accurately, a new composite laminated plate element of ANCF is proposed and the corresponding efficient formulations for evaluating both the elastic force and its Jacobian of the element are derived from the first Piola–Kirchhoff stress tensor. To improve computational efficiency, the sparse matrix technology and graph theory are used to solve the huge set of linear algebraic equations in the process of integrating the equations of motion by using the generalized-a method, and an OpenMP based parallel scheme is also introduced. Finally, the effectiveness of the proposed approach is validated through two numerical examples. One is the static simulation of a single composite laminated plate under gravity and the other is the dynamic simulations of unfolding process of a satellite system with a pair of complicated antennas.  相似文献   

16.
《Computers & Structures》2006,84(24-25):1629-1639
The geometrically non-linear, linear elastic, oscillations of composite laminated plates are studied in the time domain by direct numeric integration of the equations of motion. A p-version finite element, where first-order shear deformation is followed and that was recently proposed for moderately thick plates, is employed to define the mathematical model. By applying transverse harmonic forces, the variation of the oscillations with the angle of the fibres is investigated. With this kind of excitation, only periodic motions with a period equal to the one of the excitation are found. However, introducing in-plane forces, m-periodic or quasi-periodic oscillations, as well as chaotic oscillations are computed. The existence of chaos is confirmed by calculating the largest Lyapunov exponent.  相似文献   

17.
We present a least-squares based finite element formulation for the numerical analysis of shear-deformable shell structures. The variational problem is obtained by minimizing the least-squares functional, defined as the sum of the squares of the shell equilibrium equations residuals measured in suitable norms of Hilbert spaces. The use of least-squares principles leads to a variational unconstrained minimization problem where compatibility conditions between approximation spaces never arise, i.e. stability requirements such as inf–sup conditions never arise. The proposed formulation retains the generalized displacements and stress resultants as independent variables and, in view of the nature of the variational setting upon which the finite element model is built, allows for equal-order interpolation. A p-type hierarchical basis is used to construct the discrete finite element model based on the least-squares formulation. Exponentially fast decay of the least-squares functional is verified for increasing order of the modal expansions. Several well established benchmark problems are solved to demonstrate the predictive capability of the least-squares based shell elements. Shell elements based on this formulation are shown to be effective in both membrane- and bending-dominated states.  相似文献   

18.
The asymmetric vibration and stability of circular and annular plates using the finite element method is discussed. The plate bending model consists of one-dimensional circular and annular ring segments using a Fourier series approach to model the problem asymmetries. Using displacement functions which are the exact solutions of the static plate bending equation, the stiffness coefficients corresponding to the 1st and nth harmonics are used in closed form. By assuming that the static displacement function closely represents the vibration and stability modes, the mass and stability coefficient matrices for an annular and circular element are also constructed for the 1st and nth harmonics. Several numerical examples are presented to demonstrate the efficiency and accuracy of the finite element model with that of classical methods.  相似文献   

19.
This paper presents the application of a refined finite element model to the elastic and elastic-plastic dynamic analysis of anisotropic laminated plates. Dynamic analysis is based on Newmark's algorithm used in conjunction with the Hughes and Liu predictor-corrector scheme resulting in an ‘effective static problem’ which is solved using a Newton-Raphson-type process. Flow theory is used in the inelastic range and the Huber-Mises yielding surface extended by Hill for anisotropic materials is adopted. Numerical results obtained for two categories of anisotropic structures, namely cross-ply laminated plates and angle-ply laminated plates, are presented and the effects of anisotropy and bending/ stretching coupling on the dynamic elastic and elastic-plastic responses are discussed. The effects of lamina stack sequences and lamina angle sequences on the dynamic responses are also considered.  相似文献   

20.
A general higher-order deformation theory is developed to analyse the behaviour of an arbitrary laminated fibre-reinforced composite plate. Three-dimensional effects such as the warping of sections and the presence of interlaminar stress field components are taken into account assuming a power series expansion of displacements along the thickness. A class of C0 finite element models based on this theory is then developed for mono- and bi-dimensional elements. Applications of the models to bending and vibration of laminated plates are then discussed. The present solutions are compared with those obtained using the three-dimensional elasticity theory, classical laminate theory and other higher-order theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号