首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
研究了含未知输入的非方广义系统的有限时间输入解耦观测器设计问题,在一定条件下基于非方广义系统的结构特征,引入一个输入-状态对的非奇异转换,把含未知输入的非方广义系统等价地转化为输入已知的正常状态空间系统.用传统的设计正常状态空间系统观测器的方法去构造含未知输入的非方广义系统的未知输入观测器,并给出了观测器存在的充分条件,由此得出了有限时间观测器的设计步骤.  相似文献   

3.
本文研究了连续时间线性广义系统的区间观测器设计问题.首先根据正系统的稳定性判据提出了一种基于线性矩阵不等式的广义区间观测器直接设计法,然后通过引入更多的设计自由度进一步放宽了区间观测器的设计条件,扩大了设计方法的适用范围.所提出的设计方法无需坐标变换,是一种直接设计方法.最后,通过两个仿真算例验证了所提出方法的有效性.  相似文献   

4.
5.
The insertion of communication networks in the feedback loops of control systems is a defining feature of modern control systems. These systems are often subject to unknown inputs in a form of disturbances, perturbations, or attacks. The objective of this paper is to design and analyse an observer for networked dynamical systems with unknown inputs. The network effect can be viewed as either a perturbation or time-delay to the exchanged signals. In this paper, we (1) review an unknown input observer (UIO) design for a non-networked system, (2) derive the networked unknown input observer (NetUIO) dynamics, (3) design a NetUIO such that the effect of higher delay order terms are nullified and (4) establish stability-guaranteeing bounds on the networked-induced time-delay and perturbation. The formulation and results derived in this paper can be generalised to scenarios and applications where the signals are perturbed due to a different source of perturbation or delay.  相似文献   

6.
7.
The problem of designing an unknown input observer for linear systems and its application to fault detection is widely studied in the literature. For nonlinear systems, only subclasses of nonlinear systems and sufficient conditions have been stated. In this paper an unknown input observer design for state affine systems is considered. Based on the geometric approach, a necessary and sufficient condition is given for the existence of an unknown input observer.  相似文献   

8.
This paper proposes to design an unknown input observer (UIO) for the linear‐parameter‐varying (LPV) system on the basis of the set theory, which is named as the set‐theoretic UIO (SUIO). The advantage of the SUIO consists in that it combines active and passive approaches to obtain robustness in state estimation (SE) and fault detection (FD). The active approach is based on the use of UIO to decouple unknown inputs, while the passive approach is based on the set theory to bound uncertain factors that cannot be actively decoupled. As a result, the effect of both unknown inputs (process disturbances, modeling errors, etc.) and measurement noises can be appropriately handled in the residual signals compared with the standard UIO‐based SE and FD approaches. The design of SUIO can overcome the limitations of the traditional UIO design conditions, which can significantly broaden the application of the UIO‐based SE and FD theory. Moreover, this paper proposes a generalized framework that can provide more flexibility in the design of SUIO guaranteeing their stability by means of a group of matrix inequalities. Because the LPV system uses a collection of online obtainable scheduling variables to embed nonlinearities, the design of SUIO for the LPV system can be used to address the SE and FD problems of nonlinear systems. At the end of this paper, two case studies are used to illustrate the effectiveness of the proposed approach. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
本文针对线性描述系统研究了其有限时间函数观测器的设计方法和存在条件.首先,通过构造两个结构上完全相同的渐近收敛观测器得到了一个新的有限时间函数观测器,它可以在任意给定的时间内达到对目标函数的精确估计,且估计精度和收敛时间不依赖于原系统的初始条件.随后,对该函数观测器的存在条件进行了详细讨论,给出了函数观测器存在的充分必...  相似文献   

18.
A new concept of the unknown input observability, namely (r, s ; K) observability, for discrete-time linear multivariable systems is introduced. This concept is an extension of the conventional unknown input observability and reconstructibility. Necessary and sufficient conditions for the (r, s ; K) observability of the given system are derived by introducing a new unobservable subspace and presenting algorithms for obtaining the subspace. It is also shown that these new concepts are closely related to the existence condition of a dead-beat observer for a decentralized control system.  相似文献   

19.
In this paper, the joint input and state estimation problem is considered for linear discrete-time stochastic systems. An event-based transmission scheme is proposed with which the current measurement is released to the estimator only when the difference from the previously transmitted one is greater than a prescribed threshold. The purpose of this paper is to design an event-based recursive input and state estimator such that the estimation error covariances have guaranteed upper bounds at all times. The estimator gains are calculated by solving two constrained optimisation problems and the upper bounds of the estimation error covariances are obtained in form of the solution to Riccati-like difference equations. Special efforts are made on the choices of appropriate scalar parameter sequences in order to reduce the upper bounds. In the special case of linear time-invariant system, sufficient conditions are acquired under which the upper bound of the error covariance of the state estimation is asymptomatically bounded. Numerical simulations are conducted to illustrate the effectiveness of the proposed estimation algorithm.  相似文献   

20.
This paper addresses the problem of simultaneously estimating the state and the input of a linear discrete-time system. A recursive filter, optimal in the minimum-variance unbiased sense, is developed where the estimation of the state and the input are interconnected. The input estimate is obtained from the innovation by least-squares estimation and the state estimation problem is transformed into a standard Kalman filtering problem. Necessary and sufficient conditions for the existence of the filter are given and relations to earlier results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号