首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
社会网络数据发布具有动态性与不安全性,为避免使用不同时刻的社会网络数据进行关联攻击,兼顾节点属性多样性,提出了一种动态社会网络数据发布隐私保护方法。首先,根据匿名规则进行节点聚类,求解当前时刻的匿名图,保证同一个匿名集中节点属性多样性最大的前提下,数据发布后的节点属性与边的泄露概率均小于1/k。然后,生成相邻时刻数据关系图的差集,结合当前时刻的匿名图,删除前序时刻不存在的节点与边,逆向更新已发布数据,保证不同时刻下的匿名图具有相似的图结构,抵御关联攻击。最后,采用新浪微博数据和邮件往来数据进行实验验证,对所提方法的安全性和可用性进行评估。实验结果表明所提方法兼顾了用户数据隐私保护和数据可用性的个性化需求。  相似文献   

2.
社会网络数据发布隐私保护技术综述   总被引:7,自引:3,他引:7       下载免费PDF全文
刘向宇  王斌  杨晓春 《软件学报》2014,25(3):576-590
对社会网络隐私保护的研究现状与进展进行了阐述.首先介绍了社会网络隐私保护问题的研究背景,进而从社会网络中的隐私、攻击者背景知识、社会网络数据隐私保护技术、数据可用性与实验测评等方面对当前研究工作进行了细致的分类归纳和分析,指出了当前社会网络隐私保护的不足以及不同隐私保护技术间的对比和优缺点,并对未来需要深入研究的方向进行了展望.对社会网络数据隐私保护研究的主流方法和前沿进展进行了概括、比较和分析.  相似文献   

3.
社会网络数据的隐私保护   总被引:1,自引:0,他引:1  
保护公开的社会网络数据隐私越来越受到关注。本文简单回顾了现有的隐私保护社会网络数据技术,重点讨论社会网络数据的隐私问题。  相似文献   

4.
数据发布中的隐私保护研究综述*   总被引:2,自引:3,他引:2  
如何在发布涉及个人隐私的数据时保证敏感信息不泄露,同时又能最大程度地提高发布数据的效用,是隐私保护中面临的重大挑战。近年来国内外学者对数据发布中的隐私保护(privacy-preserving data publishing,PPDP)进行了大量研究,适时地对研究成果进行总结,能够明确研究方向。对数据发布领域的隐私保护成果进行了总结,介绍了常用的隐私保护模型和技术、隐私度量标准和算法,重点阐述了PPDP在不同场景中的应用,指出了PPDP可能的研究课题和应用前景。  相似文献   

5.
数据发布的隐私保护研究主要分为两类:数据单次发布和数据多次发布.目前,数据单次发布的隐私保护研究已经趋于完善.但是在真实的世界中,待发布的数据通常是动态变化的,数据多次发布的隐私保护是目前该领域的研究热点.对数据多次发布的隐私保护研究成果进行了总结,介绍了关系数据和社会网络数据的隐私保护模型,深入地分析了现有的关系数据和社会网络数据多次发布的各种方法,并指明了该领域的未来研究方向.  相似文献   

6.
近年来,社会网络中的隐私保护得到了诸多关注。攻击者可以应用相关背景知识对发布的社会网络进行攻击,从而导致用户的隐私被泄露。已有工作通常只考虑了结点泄露和边泄露的情况,而忽略了攻击者可能通过识别用户的敏感信息来进行攻击。针对现有问题,提出了特征泄露的概念,并进行了理论分析。在此基础上,创造性地提出了三级隐私保护的概念,建立了隐私保护模型k-s图,并给出了k-s算法来生成k-s图。理论分析和实验结果表明,k-s算法是正确有效的。  相似文献   

7.
本文对数据发布中几种常见的隐私保护模型进行了研究,并在k-匿名模型和l-多样性模型的基础上提出了一种改进的(a,d)-l多样性k-匿名模型,该模型能够对不同隐私保护程度的敏感属性进行不同程度的隐私保护,还能避免较高敏感属性在同一分组出现的频率过高引起的隐私泄露。  相似文献   

8.
隐私保护的数据发布研究   总被引:1,自引:1,他引:0  
随着信息技术的发展,个人隐私泄露成为日益严重的问题,因此迫切需要研究防止数据发布中个人隐私的泄露。为此,许多研究者提出不同的方法用以实现隐私保护的数据发布。为总结前人工作,介绍了隐私保护数据发布技术的研究意义和发展历程,阐述了本领域研究过程中的背景攻击模型和隐私模型,深入分析了用已有的概化/隐匿方法和聚类方法实现匿名数据发布技术,总结了匿名质量有关的信息度量标准,同时探讨了数据更新引起的增量数据发布方法和高维数据、移动数据的发布,最后归纳了目前研究中的问题并展望了本领域进一步的研究趋势。  相似文献   

9.
王波  杨静 《计算机科学》2012,39(4):168-171
个性化隐私保护是目前数据发布中隐私泄露控制技术研究的热点问题之一。对这方面的研究现状进行综述。首先,在分析不同类型个性化服务需求的基础上,建立相应的个性化隐私匿名模型;其次,根据采用技术的不同,对已有的个性化隐私保护匿名技术进行总结,并对各类技术的基本原理、特性进行概括性的阐述。同时,根据算法所采用信息度量的差异,给出现有个性化隐私度量的方法与标准。最后,在对比分析已有研究的基础上,总结全文并展望了个性化隐私保护匿名技术的进一步研究方向。  相似文献   

10.
针对基于传统的k-匿名模型下移动用户轨迹数据发布隐私保护算法有可能将相似度极高的轨迹匿名在同一个匿名集中从而导致可能出现的用户个人隐私泄露风险的不足。设计了一种新的轨迹数据发布隐私保护算法。该算法基于k-匿名模型,将轨迹所在的二维空间划分成大小相等的单元格,之后将由轨迹数据得到对应轨迹经过的单元格序列,从而定义轨迹k-匿名下的l-差异性,算法在满足k-匿名模型的前提下通过聚类的方法构建匿名集,并保证匿名集中的轨迹满足l-差异性标准,以达到降低由于差异性不足引起用户隐私泄露的风险的目的。实验结果表明,该算法是可行有效的。  相似文献   

11.
隐私保护数据发布中身份保持的匿名方法   总被引:3,自引:0,他引:3       下载免费PDF全文
在隐私保护的数据发布研究中,目前的方法通常都是先删除身份标识属性,然后对准标识属性进行匿名处理.分析了单一个体对应多个记录的情况,提出了一种保持身份标识属性的匿名方法,它在保持隐私的同时进一步提高了信息有效性.采用概化和有损连接两种实现方式.实验结果表明,该方法提高了信息有效性,具有很好的实用性.  相似文献   

12.
    
Data publishing is pivotal to advances in knowledge discovery. Nonetheless, such publishing may suffer from privacy disclosures. This is especially the case in transactional data such as web search and point of sales logs. The reason is that the current potent privacy preserving mechanisms mainly focus on relational data. In this work, we propose a new privacy metric for transactional data to prevent inference attacks by ensuring that the adversary learns no more about an intended victim than what is publicly available. We then propose a publication mechanism Anony, which satisfies our privacy metric without excessive loss of utility. Finally, we present an empirical evaluation of our method on three benchmark datasets, and the results show the effectiveness of our method.  相似文献   

13.
    
Privacy preservation is becoming a critical issue to data‐mining processes. In practice, a data transformation process is often needed to preserve privacy. However, data transformation would introduce a data quality issue. In this case, the impact on data quality due to the data transformation should be estimated and made clear to the user of the data transformation process. In this article, we consider the problem of k‐anonymization transformation in associative classification. The privacy preservation and data quality issues are considered in twofold. First, we propose a frequency‐based data quality metric to represent the data quality for associative classification. Second, a novel heuristic algorithm, namely minimum classification correction rate transformation, is proposed. The algorithm is guided by the classification correction rate of the given datasets. We validate our proposed metric and algorithm with University of California–Irvine repository datasets. The experiment results have shown that our proposed metric can effectively demonstrate the data quality for associative classification. The results also show that the proposed algorithm is not only efficient but also highly effective.  相似文献   

14.
提出了一种(p,a)sensitive k匿名模型,将敏感属性根据敏感度进行分组,然后给各分组设置不同的约束,并给出了(p,a)sensitive K匿名算法。实验结果表明该方法可以明显地减少隐私泄露,增强了数据发布的安全性。  相似文献   

15.
刘华玲  郑建国  孙辞海 《信息与控制》2012,41(2):197-201,209
提出了一种基于高斯随机乘法的社交网络隐私保护方法.该算法利用无向有权图表示社交网络,通过高斯随机乘法来扰乱其边的权重,保持网络最短路径不变并使其长度应与初始网络的路径长度尽可能接近,以实现对社交网络的隐私保护.从理论上证明了算法的可行性及完美算法的不存在性.采用这种随机乘法得到的仿真结果符合理论分析结果.  相似文献   

16.
数据发布中的隐私保护问题是目前信息安全领域的一个研究热点.如何有效地防止敏感隐私信息泄露已成为信息安全领域的重要课题.差分隐私保护技术是最新发展起来的隐私保护技术,它的最大优点是不对攻击者的背景知识做任何特定假设,该技术不但能为隐私数据发布提供强有力的安全防护,而且在实践中也得到了广泛应用.现有的差分隐私保护技术并不能全面有效地处理高维隐私数据的发布问题,虽然基于贝叶斯网络的隐私数据发布方法(PrivBayes)有效地处理了高维数据集转化为低维数据集的发布问题,但这种方法也存在一定的缺陷和不足.基于对贝叶斯网络的隐私数据发布方法的分析研究和改进优化,建立了加权贝叶斯网络隐私数据发布方法(加权PrivBayes),通过理论分析和实验评估,该方法不仅能保证原始隐私发布数据集的隐私安全性,同时又能大幅提升原始隐私发布数据集的数据精确性.  相似文献   

17.
欧阳佳  印鉴  刘少鹏 《软件学报》2015,26(6):1457-1472
目前隐私保护的事务数据发布研究多是基于集中式结构.针对分布式结构下事务数据发布问题,为保护数据隐私,同时最大化数据效用,提出一种满足差分隐私约束的发布策略.首先,将结果效用性优化与差分隐私约束相结合,构建分布式非线性规划模型.然后,基于全局与局部数据设计两种解决方案安全求解该分布式模型.理论分析与实验结果均表明,所提出的发布策略是安全的且满足差分隐私要求,具有很好的实用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号