首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Activation of glial cells and the consequent release of cytokines, proteins, and other intercellular signaling molecules is a well-recognized phenomenon in brain injury and neurodegenerative disease. We and others have previously described an inducible prostaglandin G/H synthase, known as PGHS-2 or cyclooxygenase-2, that is up-regulated in many cell systems by cytokines and growth factors and down-regulated by glucocorticoid hormones. In cultured mouse astrocytes we observed increased production of prostaglandin E2 (PGE2) after stimulation with either interleukin-1 beta (IL-1 beta) or the protein kinase C activator phorbol 12-myristate 13-acetate (TPA). This increase in PGE2 content was blocked by pretreatment with dexamethasone and correlated with increases in cyclooxygenase activity measured at 4 h. Northern blots revealed concomitant increases in PGHS-2 mRNA levels that peaked at 2 h and were dependent on the dosage of IL-1 beta. Dexamethasone inhibited this induction of PGHS-2 mRNA by IL-1 beta. TPA, basic fibroblast growth factor, and the proinflammatory factors tumor necrosis factor alpha and lipopolysaccharide, but not interleukin-6, also stimulated PGHS-2 mRNA expression. Relative to IL-1 beta, the greater increases in PGE2 production and cyclooxygenase activity caused by TPA correlated with a greater induction of PGHS-2 mRNA. Furthermore NS-398, a specific inhibitor of cyclooxygenase-2, blocked > 80% of the cyclooxygenase activity in TPA-treated astrocytes. These findings indicate that increased expression of PGHS-2 contributes to prostaglandin production in cultured astrocytes exposed to cytokines and other factors.  相似文献   

3.
4.
Induction of genes encoding cytokines or other, unidentified proteins may contribute to the pharmacological effects of taxol. We hypothesized that prostaglandin H synthase-2 (PGHS-2) was one of the unidentified genes induced by taxol. Taxol alone or taxol plus IFN-gamma increased PGE2 formation, PGHS-2 protein expression, and PGHS-2 mRNA expression in RAW 264.7 murine macrophages. The kinetics for mRNA induction, protein expression, and catalysis were self-consistent. A selective inhibitor of PGHS-2 blocked PGE2 formation by cells incubated with taxol; a selective inhibitor of PGHS-1 had no effect. A glucocorticoid blocked the induction of mRNA, the expression of PGHS-2 protein, and the formation of PGE2. Neither taxol alone nor taxol plus IFN-gamma altered the expression of the PGHS-1 isoenzyme in RAW 264.7 cells. Taxotere, an analogue that stabilizes microtubules as potently as taxol, did not alter the expression of PGHS-2, implying that its induction in RAW 264.7 murine macrophages did not originate from microtubule stabilization. Taxol and taxotere each induced PGHS-2 expression in human monocytes suspended in 10% human serum. However, human monocytes suspended in 10% bovine serum responded only to LPS, not to taxol or taxotere, implying that they act independently of the LPS-mimetic process that is prominent in mice. Taxol induced PGHS-2 in human and murine monocytes via a p38 mitogen-associated protein kinase pathway. The inclusion of PGHS-2 among the early response genes induced in leukocytes may be relevant to the beneficial and adverse effects encountered during taxol administration.  相似文献   

5.
6.
We and others have previously demonstrated that human alveolar macrophages produce more PGE2 in response to lipopolysaccharide (LPS) than do blood monocytes. We hypothesized that this observation was due to a greater increase in prostaglandin H synthase-2 (PGHS-2) enzyme mass in the macrophage compared to the monocyte. To evaluate this hypothesis, alveolar macrophages and blood monocytes were obtained from healthy nonsmoking volunteers. The cells were cultured in the presence of 0 to 10 micrograms/ml LPS. LPS induced the synthesis of large amounts of a new 75-kD protein in human alveolar macrophages, and a lesser amount in monocytes. Synthesis of this protein required more than 6 h and peaked in 24 to 48 h; the protein reacted with an anti-PGHS-2 antibody prepared against mouse PGHS-2. Associated with synthesis of the protein was a marked increase in LPS-stimulated and arachidonic acid-stimulated synthesis of PGE2 by alveolar macrophages compared to monocytes. Cells not exposed to LPS contained only PGHS-1 and synthesized very little PGE2 during culture or in response to exogenous arachidonic acid. An LPS-induced mRNA, which hybridized to a human cDNA probe for PGHS-2 mRNA, was produced in parallel with production of this new protein and was produced in much greater amounts by alveolar macrophages compared to blood monocytes. This mRNA was not detectable in cells not exposed to LPS. In contrast, both types of cells contain mRNA, which hybridizes to a cDNA probe for PGHS-1. This mRNA did not increase in response to LPS. LPS also had no effect on PGHS-1 protein. These data demonstrate that PGE2 synthesis in human alveolar macrophages and blood monocytes correlates to the mass of PGHS-2 in the cell. We conclude that the greater ability of the macrophage to synthesize PGE2 in response to LPS is due to greater synthesis of PGHS-2 by the macrophage.  相似文献   

7.
8.
The mechanism by which interleukin-1 (IL-1) and transforming growth factor alpha (TGF-alpha) regulate prostaglandin synthesis has been examined in the clonal mouse osteoblastic cell line MC3T3-E1. Cells were grown in DMEM containing 10% fetal calf serum. Prostaglandin E2 (PGE2) production was determined by radioimmunoassay or by prelabeling cells with [3H]arachidonic acid, followed by high-performance liquid chromatography (HPLC) analysis of the labeled products released into the medium. Prostaglandin G/H synthase (PGHS) mRNAs were quantified by northern blot analysis using [32P]labeled cDNA probes. By HPLC, PGE2 was the major prostanoid produced under basal or stimulated conditions. No release of thromboxane or 6-keto-PGF1 alpha into the medium was detected. PGE2 production was stimulated approximately 7- to 14-fold by IL-1 (1 ng/ml) and 3- to 8-fold by TGF-alpha (30 ng/ml) after 24 h. In combination, however, IL-1 and TGF-alpha caused a synergistic 37- to 71-fold increase in PGE2 accumulation. PGHS-1 mRNA levels were maximally increased approximately 2- to 3-fold by IL-1 and 1.5 to 2.5-fold by TGF-alpha after 24 h; the combination of IL-1 and TGF-alpha produced only an additive 3- to 6-fold increase. Western blotting revealed a corresponding 3-fold increase in immunoreactive PGHS-1 protein in response to combined IL-1 and TGF-alpha. PGHS-2 mRNA was increased 1.4-fold by TGF-alpha at 1 h, and the combination of IL-1 and TGF-alpha caused a 1.7-fold increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Prostaglandin E2 (PGE2) is known to autoamplify its production in the osteoblasts through the induction of prostaglandin G/H synthase-2 (PGHS-2), which is the inducible form of the rate-limiting enzyme in PG synthesis, PGHS. To elucidate the cellular mechanism mediating this process, we have employed the PGE2 analogs, which are specific agonists for four subtypes of PGE receptor, and studied the potency of these analogs to induce PGHS-2 mRNA in mouse osteoblastic MC3T3-E1 cells. The induction was mainly observed by 17-phenyl-omega-trinor PGE2 (EP1 agonist) and sulprostone (EP3/EP1 agonist), but not by butaprost (EP2 agonist) or 11-deoxy PGE1 (EP4/EP2 agonist). Since EP3 subtype was undetectable in MC3T3-E1 cells, these data indicate that PGHS-2 mRNA induction is mediated through EP1 subtype of PGE receptor in MC3T3-E1 cells. PGE2 production determined by radioimmunoassay was also increased by 17-phenyl-omega-trinor PGE2 and sulprostone. The autoamplification of PGE2 production is considered to be important in elongating the otherwise short-lived PGE2 action in certain physiological conditions such as mechanical stress and fracture healing, as well as the pathological inflammatory bone loss. The observations in the present study provide us with the better understanding of these processes.  相似文献   

10.
11.
Growth factors may play a role in the formation of prostaglandins (PG) by cerebral blood vessels during development or reaction to injury. In smooth muscle cultures isolated from murine cerebral microvessels PG production was induced with either serum or epidermal growth factor (EGF). Prostaglandin H synthase (PGHS) activity peaked at 6 h after the addition of 10% serum or 50 ng/ml EGF. Increases in expression of PGHS-1 mRNA were small (7- to 10-fold) compared with PGHS-2 (30- to 120-fold), and the induction patterns were different for serum and EGF. An increase in PGHS-2 message was detected by 0.5 h of adding either agent, but peak induction occurred earlier for EGF than for serum, 1 h vs. 3 h, respectively. The response to either stimulus had returned to prestimulation levels by 12 h. The induction of PGHS-2 protein was also transient, but followed a more delayed time course (peak levels at 6 h). Induction of activity, message, and protein by either agent was blocked by 1 microM dexamethasone and attenuated by genistein (100 microM), a nonspecific tyrosine kinase inhibitor. Tyrphostin 47, a more selective EGF receptor tyrosine kinase inhibitor, dose-dependently inhibited EGF-stimulated PGHS activity, completely abolishing PG production at 100 microM. However, this inhibitor had no effect on serum-stimulated PG production. Curiously, 100 microM tyrphostin 47 enhanced EGF-induced PGHS-2 mRNA and protein expression. These data suggest that EGF induces the expression of PGHS-2 in cerebromicrovascular smooth muscle by a mechanism that requires tyrosine kinase activity and that is distinct from serum.  相似文献   

12.
13.
14.
15.
The present study was designed to characterize effects of inhibiting PG production by infusing nimesulide (CAS 51803-78-2) on PGE2 production and expression of uterine labor-related genes in pregnant sheep. Myometrium, endometrium, and placenta were collected following 6 h of i.v. nimesulide or vehicle infusion. Infusions were commenced 9 h after onset of spontaneous term labor. Tissues were also collected from term control ewes not in labor. PGE2 was measured in fetal plasma by RIA. ER, OTR, Hsp 70 and 90, cPLA2, and PGHS-2 messenger RNA (mRNA) abundance in myometrium, endometrium, and PGHS-2 in placenta were quantified by Northern blot analysis. Fetal plasma PGE2 decreased during nimesulide infusion (P < 0.05). ER, OTR, Hsp 70, and Hsp 90 mRNA increased during spontaneous term labor in vehicle infused ewes in both myometrium and endometrium. In myometrium after nimesulide infusion, OTR and Hsp 70 mRNA decreased significantly (P < 0.05) compared with vehicle infused animals, but the decrease in Hsp 90 and ER mRNA fell outside the level of significance. In the endometrium, nimesulide produced a decrease in ER and OTR mRNA (P < 0.05) compared with vehicle infused animals, but the changes in Hsp 90 and 70 mRNA fell outside the level of significance. Nimesulide reversed the up-regulation of PGHS-2 mRNA that occurred in myometrium, endometrium, and placenta during vehicle infusion (P < 0.05). cPLA2 was only elevated in the endometrium in vehicle infused ewes and did not change in either endometrium or myometrium after nimesulide infusion. CONCLUSIONS: Inhibition of PG production resulted in decreased fetal plasma PGE2. The decreased abundance of mRNA for several of the well described cassette of utero-placental labor-related genes following nimesulide inhibition may result from altered PG production.  相似文献   

16.
Interleukin-4 (IL-4) is a potent immunomodulatory cytokine synthesized and released by Th2 lymphocytes, mast cells and basophils. It has important effects on monocyte/macrophage cell lines, regulating the secretion of several cytokines, and the production of eicosanoids. In human monocytes and macrophages, IL-4 increases the expression of 15-lipoxygenase and 15-HETE production, but suppresses the inducible isoform of the prostaglandin H synthase (PGHS-2) enzyme and prostanoid synthesis. Prostanoids, in particular prostaglandin E2 (PGE2) have important functions in modulating inflammatory and fibrotic processes. We compared the effect of IL-4 on the expression of PGHS-2 in human alveolar macrophages (AM) and blood monocytes (BM) activated with physiologically distinct stimuli, lipopolysaccharide (LPS) or IL-1 in vitro. The induction of PGHS-2 mRNA and protein, and prostanoid synthesis by all stimuli was inhibited by exogenous IL-4 in both cell types. However, monocytes were more susceptible to this effect of IL-4 than alveolar macrophages.  相似文献   

17.
18.
19.
20.
The purpose of our studies was to examine differentiation-dependent expression of 15-lipoxygenase (15-LO) and prostaglandin H synthase (PGHS) isoforms in cultured normal human tracheobronchial epithelial cells. In the presence of retinoic acid (RA) the cultures differentiated into a mucociliary epithelium. When cultured in RA-depleted media, the cultures differentiated into a squamous epithelium. In the absence of RA the cultures did not express 15-LO or either of the PGHS isoforms. The PGHS-1 isoform was not expressed in RA-sufficient cultures, but both PGHS-2 messenger RNA (mRNA) and protein were strongly expressed, and prostaglandin E2 (PGE2) was produced during the predifferentiation phase. No PGHS-2 expression or PGE2 could be detected in fully differentiated mucociliary cultures. 15-LO showed the opposite expression pattern: neither mRNA nor protein were detected during the predifferentiation stage, but both were strongly expressed once mucous differentiation had occurred. Cytosolic phospholipase A2 protein was expressed throughout all stages of growth and differentiation. The cultures generated no 15-LO metabolites when incubated with 10 microM to 50 microM arachidonic acid (AA) and stimulated with ionophore. However, lysates prepared from such cultures generated 15-hydroxyeicosatetraenoic acid (15-HETE) and 12-HETE from AA, indicating that the cells contained active enzyme. When cultures expressing 15-LO protein were incubated with 10 microM linoleic acid (LA) instead of AA, and were stimulated with ionophore, they generated 13-hydroxy-9,11-octadecadienoic acid. LA rather than AA appeared to be the preferred substrate for the 15-LO enzyme. Our studies indicated that the expression of 15-LO and PGHS-2 is differentiation dependent in airway epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号