首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Over the past two decades, many human illness outbreaks were attributed to consumption of undercooked beef products containing Shiga toxin-producing Escherichia coli (STEC). The illnesses included mild or bloody diarrhea, hemorrhagic colitis, and the life-threatening hemolytic uremic syndrome (HUS). Tracing these outbreaks to O157 and an increasing number of non-O157 STEC strains suggests that beef safety concerns will continue to rise and may negatively affect the beef industry. To effectively address these concerns, it is critical to evaluate the role of beef in STEC infections. In this review, published reports on beef contamination were evaluated to assess prevalence rates and health risks of STEC isolates. Global testing of beef showed wide ranges of prevalence rates of O157 (from 0.01% to 54.2%) and non-O157 (from 1.7% to 62.5%) STEC. Of the 155 STEC serotypes found in beef, 31 and 25 are known to cause HUS and/or other illnesses, respectively.  相似文献   

2.
Prevalence of Shiga toxin-producing Escherichia coli in beef cattle   总被引:1,自引:0,他引:1  
A large number of Shiga toxin-producing Escherichia coli (STEC) strains have caused major outbreaks and sporadic cases of human illnesses, including mild diarrhea, bloody diarrhea, hemorrhagic colitis, and the life-threatening hemolytic uremic syndrome. These illnesses have been traced to both O157 and non-O157 STEC. In a large number of STEC-associated outbreaks, the infections were attributed to consumption of ground beef or other beef products contaminated with cattle feces. Thus, beef cattle are considered reservoirs of STEC and can pose significant health risks to humans. The global nature of the human food supply suggests that safety concerns with beef will continue and the challenges facing the beef industry will increase at the production and processing levels. To be prepared to address these concerns and challenges, it is critical to assess the role of beef cattle in human STEC infections. In this review, published reports on STEC in beef cattle were evaluated to achieve the following specific objectives: (i) assess the prevalence of STEC in beef cattle, and (ii) determine the potential health risks of STEC strains from beef cattle. The latter objective is critically important because many beef STEC isolates are highly virulent. Global testing of beef cattle feces revealed wide ranges of prevalence rates for O157 STEC (i.e., 0.2 to 27.8%) and non-O157 STEC (i.e., 2.1 to 70.1%). Of the 261 STEC serotypes found in beef cattle, 44 cause hemolytic uremic syndrome and 37 cause other illnesses.  相似文献   

3.
The non-O157 Shiga toxin-producing Escherichia coli (STEC) contamination in carcasses and feces of 811 bovines in nine beef abattoirs from Argentina was analyzed during a period of 17 months. The feces of 181 (22.3%) bovines were positive for non-O157 STEC, while 73 (9.0%) of the carcasses showed non-O157 STEC contamination. Non-O157 STEC strains isolated from feces (227) and carcasses (80) were characterized. The main serotypes identified were O178:H19, O8:H19, O130:H11, and O113:H21, all of which have produced sporadic cases of hemolytic-uremic syndrome in Argentina and worldwide. Twenty-two (7.2%) strains carried a fully virulent stx/eae/ehxA genotype. Among them, strains of serotypes O103:[H2], O145:NM, and O111:NM represented 4.8% of the isolates. Xba I pulsed-field gel electrophoresis pattern analysis showed 234 different patterns, with 76 strains grouped in 30 clusters. Nine of the clusters grouped strains isolated from feces and from carcasses of the same or different bovines in a lot, while three clusters were comprised of strains distributed in more than one abattoir. Patterns AREXSX01.0157, AREXBX01.0015, and AREXPX01.0013 were identified as 100% compatible with the patterns of one strain isolated from a hemolytic-uremic syndrome case and two strains previously isolated from beef medallions, included in the Argentine PulseNet Database. In this survey, 4.8% (39 of 811) of the bovine carcasses appeared to be contaminated with nonO157 STEC strains potentially capable of producing sporadic human disease, and a lower proportion (0.25%) with strains able to produce outbreaks of severe disease.  相似文献   

4.
Abstract: The objective of this study was to investigate the growth of Shiga toxin‐producing Escherichia coli (STEC, including serogroups O45, O103, O111, O121, and O145) in raw ground beef and to develop mathematical models to describe the bacterial growth under different temperature conditions. Three primary growth models were evaluated, including the Baranyi model, the Huang 2008 model, and a new growth model that is based on the communication of messenger signals during bacterial growth. A 5 strain cocktail of freshly prepared STEC was inoculated to raw ground beef samples and incubated at temperatures ranging from 10 to 35 °C at 5 °C increments. Minimum relative growth (<1 log10 cfu/g) was observed at 10 °C, whereas at other temperatures, all 3 phases of growth were observed. Analytical results showed that all 3 models were equally suitable for describing the bacterial growth under constant temperatures. The maximum cell density of STEC in raw ground beef increased exponentially with temperature, but reached a maximum of 8.53 log10 cfu/g of ground beef. The specific growth rates estimated by the 3 primary models were practically identical and can be evaluated by either the Ratkowsky square‐root model or a Bělehrádek‐type model. The temperature dependence of lag phase development for all 3 primary models was also developed. The results of this study can be used to estimate the growth of STEC in raw ground beef at temperatures between 10 and 35 °C. Practical Application: Incidents of foodborne infections caused by non‐O157 Shiga toxin‐producing Escherichia coli (STEC) have increased in recent years. This study reports the growth kinetics and mathematical modeling of STEC in ground beef. The mathematical models can be used in risk assessment of STEC in ground beef.  相似文献   

5.
对2株食物中毒病人体内分离的产志贺毒素突变株EC130和EC169进行毒力分析。EC130和EC169携带stx基因但不能正常表达志贺毒素,具有eae基因和hly基因,仍具有一定毒力。初步探讨了产志贺毒素突变株不能正常表达志贺毒素的机理,高产志贺毒素的对照株携带Q933基因,而EC130和EC169不携带Q933基因。结果表明,单一采用志贺毒素作为检测靶标,容易造成产志贺毒素突变株漏检,今后在检测食品中产志贺毒素株时应增加检验eae基因和hly基因。  相似文献   

6.
Between July 1999 and December 2000, the prevalence of Shiga toxin-producing Escherichia coli (STEC) was established in 200 Argentine healthy young beef steers (14-16 months old) grown under local production systems with a feed grain period of 3-4 months, and the STEC strains isolated were examined in regard to their phenotypic and genotypic characteristics. Stool samples (n = 70) and rectal swabs (n = 130) were taken at the slaughterhouse level. By polymerase chain reaction (PCR), Shiga toxin (stx) gene sequences were detected in 69% of the samples. Eighty-six STEC strains were isolated from 39% of the animals. Serogroups identified, in order of frequency, were: O8 (16 strains), O113 (14), O103 (5), O91 (4), O171 (3), O174 (3), O25 (2), O112 (2), O145 (2), O2, O11, O104, O121, O128, O143, O146, O157. The most frequent serotype isolated was O8:H19 (12.9%). A total of 17 serotypes, including E. coli O157:H7 found in one animal (0.5%), have been previously associated with hemolytic uremic syndrome (HUS), bloody and non-bloody diarrhea in different countries, including Argentina. The prevalent genotype isolated was stx2 (51 of 86, 59.3%). Subtyping of stx2 variants showed the prevalence of stx2vh-b (25.6%) and stx2vh-a types (24.4%), and revealed the presence of an atypical stx2-v. Only 7.0% of STEC strains carried eae, and 33.7% harbored EHEC-hlyA gene. The full virulent genotype (stx/eae/EHEC-hlyA) was found to be present in 4 of the 86 (4.7%) STEC strains isolated. This research indicates that young steers from the main beef-producing area of Argentina are an important reservoir of STEC strains; however, its importance as agents of human diseases in our country has still to be established.  相似文献   

7.
8.
Shiga toxin-producing Escherichia coli (STEC) have been associated with a broad spectrum of diarrhoeal syndromes. Some of these cases have been attributed to foods of bovine origin or other foods cross-contaminated by beef products or cow manure. The purpose of this study was to determine the pattern of STEC distribution in selected red meats over time. Samples of ground beef and lamb cuts were collected over a 52-week period from 31 different outlets and 25 g portions were assayed for STEC. STEC were isolated from 46/285 (16%) ground beef and 111/275 (40%) lamb samples using an stx PCR screen followed by colony hybridisation. All isolates were tested by PCR for additional STEC virulence markers with 95% of ground beef isolates shown to possess stx(2) and 80% of lamb cutlet isolates shown to possess stx(1) and stx(2). The enterohaemolysin gene (ehxA) was detected in 65% and 53% of ground beef and lamb isolates respectively. Putative enterohaemorrhagic E. coli (EHEC), i.e. STEC possessing the E. coli attaching and effacing gene (eae) were not isolated. The STEC isolates comprised 18 and 15 different serotypes from ground beef and lamb respectively. STEC of serotypes O157, O111 and O26 (common enterohaemorrhagic E. coli serotypes) were not isolated. Serotypes O174 and O91 were the most common serotypes isolated from ground beef samples and O128 and O91 the most common from lamb cutlet samples. The presence of STEC in retail red meats highlights the need for a clearer understanding of STEC in food and human illness to interpret the public health significance of these findings.  相似文献   

9.
Shiga toxin-producing Escherichia coli (STEC) is increasingly recognized as a common cause of diarrhea. STEC infection is a major public health threat because of its ability to cause serious and potentially life-threatening illnesses. The main reservoirs of STEC are believed to be the intestinal tracts of animals. Several studies have investigated the prevalence of STEC in various food items. The objective of this study was to determine the prevalence of STEC in the Seattle ground beef supply. In addition, the relative amount of STEC contamination between stores was compared, and possible differences between types of ground beef based on fat content (9, 16, and 23%) were investigated. A survey of Stx-I and/or Stx-II genes in fecal samples from cattle at a local slaughterhouse was also conducted. Of 296 ground beef samples tested from area retail grocery stores, 16.8% were positive for the presence of the toxin genes. Our data showed that there was no statistically significant difference (P > 0.05) in the prevalence of STEC between the ground beef samples of different fat contents and between grocery store chains. Of the 103 cattle fecal samples tested, 19 (18.4%) were found positive for the presence of Stx-I and/or Stx-II genes. The presence of a rather high percentage of STEC in the food supply in the absence of large number of cases suggests that not all STEC lineages are pathogenic for humans.  相似文献   

10.
The purpose of the present study was to determine the heat resistance of six non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes in comparison to E. coli O157:H7 in single-strength apple juice without pulp. The thermal parameters for stationary-phase and acid-adapted cells of E. coli strains from serogroups O26, O45, O103, O111, O121, O145, and O157:H7 were determined by using an immersed coil apparatus. The most heat-sensitive serotype in the present study was O26. Stationary-phase cells for serotypes O145, O121, and O45 had the highest D(56°C)-value among the six non-O157 serotypes studied, although all were significantly lower (P < 0.05) than that of E. coli O157:H7. At 60°C E. coli O157:H7 and O103 demonstrated the highest D-values (1.37 ± 0.23 and 1.07 ± 0.03 min, respectively). The D(62°C) for the most heat-resistant strain belonging to the serotype O145 was similar (P > 0.05) to that for the most resistant O157:H7 strain (0.61 ± 0.17 and 0.60 ± 0.09 min, respectively). The heat resistance for stationary-phase cells was generally equal to or higher than that of acid-adapted counterparts. Although E. coli O157:H7 revealed D-values similar to or higher than the individual six non-O157 STEC serotypes in apple juice, the z-values for most non-O157 STEC tested strains were greater than those of E. coli O157:H7. When data were used to calculate heat resistance parameters at a temperature recommended in U.S. Food and Drug Administration guidance to industry, the D(71.1°C) for E. coli O157:H7 and non-O157 STEC serotypes were not significantly different (P > 0.05).  相似文献   

11.
针对产志贺毒素大肠杆菌的毒力基因stx 设计特异性引物,并建立一种菌落PCR 方法。菌落PCR 模拟实验证实,该方法特异性强,能良好的扩增出O157 的stx1 和stx2 基因,而普通大肠杆菌、蜡样芽孢杆菌、金黄色葡萄球菌则无PCR 扩增产物。应用分子检测初筛、选择性培养、菌落PCR 相结合的方法,检测实际食品样品,分离检测到一株携带 stx1 的产志贺毒素大肠杆菌。本实验建立的菌落PCR 方法可应用于食品检验。  相似文献   

12.
食源性产志贺毒素大肠杆菌的分离及菌株特征分析   总被引:1,自引:0,他引:1  
了解不同食品中产志贺毒素大肠杆菌的流行情况、菌株特征及潜在致病性。方法 对我国不同地区采集的355份食品样品进行产志贺毒素大肠杆菌分离鉴定,对菌株进行stx1/stx2基因分型、eae等毒力基因检测,并对菌株进行多位点序列分型(MLST)分析。结果 355份样品中44份stx2基因阳性,共分离出11株非O157 产志贺毒素大肠杆菌,其中3株携带stx2a亚型,3株携带stx2e亚型,1株携带stx2b亚型,4株不能分型;5株携带ehxA、saa毒力基因,2株携带subA基因,1株携带katP基因;MLST将11株菌分为7个不同的ST型,存在与溶血性尿毒综合症患者肠出血性大肠杆菌分离株(HUS-associated enterohemorrhagic E.coli,HUSEC)及主要流行血清群产志贺毒素大肠杆菌亲缘关系较近的ST型别。结论 我国食品中存在一定程度的非O157产志贺毒素大肠杆菌污染,部分菌株具有潜在致病性,应加强对食品中STEC的监测。  相似文献   

13.
Contaminated food continues to be the principal vehicle for transmission of Escherichia coli O157:H7 and other Shiga toxin-producing E. coli (STEC) to humans. A large number of foods, including those associated with outbreaks (alfalfa sprouts, fresh produce, beef, and unpasteurized juices), have been the focus of intensive research studies in the past few years (2003 to 2006) to assess the prevalence and identify effective intervention and inactivation treatments for these pathogens. Recent analyses of retail foods in the United States revealed E. coli O157:H7 was present in 1.5% of alfalfa sprouts and 0.17% of ground beef but not in some other foods examined. Differences in virulence patterns (presence of both stx1 and stx2 genes versus one stx gene) have been observed among isolates from beef samples obtained at the processing plant compared with retail outlets. Research has continued to examine survival and growth of STEC in foods, with several models being developed to predict the behavior of the pathogen under a wide range of environmental conditions. In an effort to develop effective strategies to minimize contamination, several influential factors are being addressed, including elucidating the underlying mechanism for attachment and penetration of STEC into foods and determining the role of handling practices and processing operations on cross-contamination between foods. Reports of some alternative nonthermal processing treatments (high pressure, pulsed-electric field, ionizing radiation, UV radiation, and ultrasound) indicate potential for inactivating STEC with minimal alteration to sensory and nutrient characteristics. Antimicrobials (e.g., organic acids, oxidizing agents, cetylpyridinium chloride, bacteriocins, acidified sodium chlorite, natural extracts) have varying degrees of efficacy as preservatives or sanitizing agents on produce, meat, and unpasteurized juices. Multiple-hurdle or sequential intervention treatments have the greatest potential to minimize transmission of STEC in foods.  相似文献   

14.
IS1203v is an insertion sequence (IS) which is identical to the most abundant IS elements in the genome of Escherichia coli O157:H7. However, there is no sequence homologous to IS1203v in the genome of E. coli K-12. We constructed a system to analyze the excision frequency of IS1203v, and demonstrated that the frequency in E. coli O157:H7 was approximately 10(5) times higher than that in E. coli K-12. We also investigated the excision frequencies of IS1203v in various E. coli isolates, and showed that the excision frequencies of IS1203v-possessing strains were approximately 10(3) times higher than those of IS1203v-nonpossessing strains. The results suggest that the IS1203v-possessing strains use a common system to enhance IS1203v excision.  相似文献   

15.
The objective of this study was to compare the survival of non-O157 Shiga toxin-producing Escherichia coli (STEC) with E. coli O157:H7 during pepperoni production. Pepperoni batter was inoculated with 7 log CFU/g of a seven-strain STEC mixture, including strains of serotypes O26, O45, O103, O111, O121, O145, and O157. Sausages were fermented to pH ≤4.8, heated at 53.3°C for 1 h, and dried for up to 20 days. STEC strains were enumerated at designated intervals on sorbitol MacConkey (SMAC) and Rainbow (RA) agars; enrichments were completed in modified EC (mEC) broth and nonselective tryptic soy broth (TSB). When plated on SMAC, total E. coli populations decreased 2.6 to 3.5 log after the 1-h heating step at 53.3°C, and a 4.9- to 5-log reduction was observed after 7 days of drying. RA was more sensitive in recovering survivors; log reductions on it were 1.9 to 2.6, 3.8 to 4.2, and 4.6 to 5.3 at the end of cook, and at day 7 and day 14 of drying, respectively. When numbers were less than the limit of detection by direct plating on days 14 and 20 of drying (representing a 5-log kill), no more than one of three samples in each experiment was positive by enrichment with mEC broth; however, STEC strains were recovered in TSB enrichment. Freezing the 7-day dried sausage for 2 to 3 weeks generated an additional 1- to 1.5-log kill. Confirmation by PCR revealed that O103 and O157 had the greatest survival during pepperoni productions, but all serotypes except O111 and O121 were occasionally recovered during drying. This study suggests that non-O157 STEC s trains have comparable or less ability than E. coli O157 to survive the processing steps involved in the manufacture of pepperoni. Processes suitable for control of E. coli O157 will similarly inactivate the other STEC strains tested in this study.  相似文献   

16.
Food Science and Biotechnology - Some Escherichia coli serotypes cause diarrhea in infants and acute gastroenteritis. In this study, the incidence of Shiga toxin-producing (STEC) and...  相似文献   

17.
Three Myoviridae phages (DT1, DT5 and DT6) specific for pathogenic Escherichia coli were studied, either individually or as cocktails, for their lytic activity on in vitro challenge tests. Also, cocktail ability to reduce artificial contamination on hard surfaces (glass coverslips and stainless steel coupons) by three pathogenic Escherichia coli strains (EPEC920, non-O157 STEC ARG4827 and O157:H7 STEC464) was tested. Assays of phage stability during refrigerated storage showed that the three phages evaluated retained a high viability after two months at 4 °C. Challenge tests showed high reductions in viable cells, of up to 6.4 log CFU ml 1, for all tested strains at 37 °C. Efficiency was somewhat lower at 4 °C, though biocontrol levels were still good, reaching values of up to 3.8 log CFU ml 1. Considering only results obtained at 37 °C, phage cocktails produced the highest reduction in most cases. Treatments with phage cocktails produced complete inactivation (ca. 5–6 log CFU ml 1) of EPEC920 and O157:H7 STEC464 on glass coverslips, and of EPEC920, non-O157 STEC ARG4827 and O157:H7 STEC464 on stainless steel coupons, at both temperatures (4 °C and 37 °C) and multiplicity of infection (ca. 103 and 107) tested. However, some strains not detected at 3 h were sometimes detected at 24 h, and inactivation of non-O157 STEC ARG4827 on glass coverslips was never accomplished; viable cell reductions in all these cases ranged from 1.2 to 5.4 log CFU ml 1. Our results suggest that lytic phages, either individually or as a cocktail, may be useful for reducing contamination on hard materials used in food processing surfaces. To our knowledge, this is the first study focused on the use of bacteriophages to reduce contamination of food processing surfaces by EPEC and non-O157 STEC strains.  相似文献   

18.
将一株大肠杆菌O157PCR扩增stx2基因全长并克隆测序。该菌株stx2基因与GenBank数据库收录的stx2基因最高同源性为98%,在3个核苷酸位点存在基因突变。采用邻位相连法构建进化树,序列分析结果表明O157为stx2C基因亚型。了解大肠杆菌O157的基因突变情况,并为开发大肠杆菌分子检测方法提供了参考。  相似文献   

19.
The aim of the present study was to investigate the occurrence of Escherichia coli O157:H7 and other Shiga toxin-producing E. coli (STEC) in 'Castellano' cheese, a non-cooked and hard or semi-hard Spanish cheese made from ewe's milk. A total of 83 raw milk cheese samples with different ripening times (2.5, 6 and 12 months) were taken at 30 cheese factories. Samples were examined for the presence of STEC using in the first stage the Association of Official Analytical Chemists (AOAC) official method number 997.11, and then, in the second stage, isolates were tested for virulence genes using genotypic (PCR) methods. Three STEC strains were detected in two samples (2.4%) of 'Castellano' cheese, one with 2.5 and the other one with 12 month-ripening period. From those STEC isolates, two were identified as E. coli O14 and the third presented an O-specific polysaccharide not-groupable serologically (ONG). PCR showed that all isolates were characterized by harbouring the Shiga toxin (stx) stx1 gene and by the absence of the genes for stx2, eaeA, and ehxA virulence factors. This study revealed the potential of STEC to survive in long-ripened-hard cheeses.  相似文献   

20.
Escherichia coli O26, O45, O103, O111, O121, O145, and O157 are the predominant Shiga toxin-producing E. coli (STEC) serogroups implicated in outbreaks of human foodborne illness worldwide. The increasing prevalence of these pathogens has important public health implications. Beef products have been considered a main source of foodborne human STEC infections. Robust and sensitive methods for the detection and characterization of these pathogens are needed to determine prevalence and incidence of STEC in beef processing facilities and to improve food safety interventions aimed at eliminating STEC from the food supply. This study was conducted to develop Taqman real-time multiplex PCR assays for the screening and rapid detection of the predominant STEC serogroups associated with human illness. Three serogroup-specific assays targeted the O-antigen gene clusters of E. coli O26 (wzy), O103 (wzx), and O145 (wzx) in assay 1, O45 (wzy), O111 (manC), and O121 (wzx) in assay 2, and O157 (rfbE) in assay 3. The uidA gene also was included in the serogroup-specific assays as an E. coli internal amplification control. A fourth assay was developed to target selected virulence genes for Shiga toxin (stx(1) and stx(2)), intimin (eae), and enterohemolysin (ehxA). The specificity of the serogroup and virulence gene assays was assessed by testing 100 and 62 E. coli strains and non-E. coli control strains, respectively. The assays correctly detected the genes in all strains examined, and no cross-reactions were observed, representing 100 % specificity. The detection limits of the assays were 10(3) or 10(4) CFU/ml for pure cultures and artificially contaminated fecal samples, and after a 6-h enrichment period, the detection limit of the assays was 10(0) CFU/ml. These results indicate that the four real-time multiplex PCR assays are robust and effective for the rapid and reliable detection of the seven predominant STEC serogroups of major public health concern and the detection of their virulence genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号