首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The OZF gene encodes a protein consisting of 10 zinc finger motifs and is located on chromosome 19q3.1. We report here the amplification and over-expression of the OZF gene in pancreatic carcinomas. Increased gene copy number was detected in 3 of 12 tumour cell lines and 2 of 12 primary pancreatic carcinomas. Expression was detected in all cell lines, and the gene was over-expressed in cell lines with OZF gene amplification. Five of 8 tumours, including 2 primary tumours with OZF gene amplification, displayed high levels of OZF protein, whereas normal pancreas expressed low levels. Immuno-histochemical analysis showed that expression was restricted to tumour cells. Thus, high-level expression of OZF is frequent in pancreatic carcinomas and may contribute to the development or progression of this tumour.  相似文献   

2.
High-resolution two-dimensional gel electrophoresis (2-DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2-DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent (56/727) of the consistently detected proteins were found in significantly (P< 0.001) variable levels among the cell lines. Eight proteins present in normal cultured breast epithelial cells were not detected in any of the tumor cell lines. We identified a subset of the differentially expressed proteins using a combination of immunostaining, protein sequencing, comigration, and subcellular fractionation. These identified proteins include the intermediate filament components vimentin and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27 and hsp60 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Many of the differentially expressed proteins we identified have roles in cellular proliferation and differentiation, including annexin V, elongation initiation factor 5A, Rho GDP dissociation inhibitor, and prohibitin. We identified inosine-5-monophosphate dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells. These results expand the human breast epithelial cell protein database (http:// www.anl.gov/CMB/PMG) which is being built to assist researchers with the identification of abnormal patterns of expression and pathways associated with malignancy.  相似文献   

3.
Protein complexes composed of cyclins and cyclin-dependent kinases control the orderly progression of mammalian cells through the cell cycle. The p27(Kip1) protein belongs to a family of cyclin-dependent kinase-inhibitory proteins that are negative regulators of cell cycle progression and have been proposed as candidate tumor suppressor genes. However, the p27(Kip1) gene is only rarely mutated in human primary breast carcinomas and breast cancer cell lines. To further address the role of p27(Kip1) in the development of human tumors, we determined by Western blot analysis the levels of expression of the p27(Kip1) protein in a series of human cancer cell lines and found that this protein is expressed at high levels in many of these cell lines, even during exponential growth. The levels of p27(Kip1) were significantly associated with the levels of cyclins D1 and E. In contrast to the high level of p27(Kip1) in breast cancer cell lines, three cell lines established from normal mammary epithelium expressed low levels of this protein. Cell synchronization studies demonstrated deregulation of the expression of p27(Kip1) throughout the cell cycle in two breast cancer cell lines but normal regulation in a normal mammary epithelial cell line. Immunohistochemical studies on p27(Kip1) expression in 52 primary human breast cancers indicated that this protein was also expressed at relatively high levels in 44% of the tumor samples, but it was barely detectable or undetectable in the remaining 56% of the samples. Additional studies are required to determine why some breast cancer cells express relatively high levels of p27(Kip1) despite its known role as an inhibitor of cell cycle progression.  相似文献   

4.
5.
Exposure of normal juvenile chicken bone marrow cells to the replication defective avian reticuloendotheliosis virus strain T (REV-T) (chicken syncytial virus [CSV]) in vitro resulted in the generation of transformed cell lines containing T cells. The transformed T cells derived from bone marrow included cells expressing either alpha/beta or gamma/delta T cell receptors (TCRs) in proportions roughly equivalent to the proportions of TCR-alpha/beta and TCR-gamma/delta T cells found in the normal bone marrow in vivo. Essentially all TCR-alpha/beta-expressing transformed bone marrow-derived T cells expressed CD8, whereas few, if any, expressed CD4. In contrast, among TCR-gamma/delta T cells, both CD8+ and CD8- cells were derived, all of which were CD4-. Exposure of ex vivo spleen cells to REV-T(CSV) yielded transformed polyclonal cell lines containing > 99% B cells. However, REV-T(CSV) infection of mitogen-activated spleen cells in vitro resulted in transformed populations containing predominantly T cells. This may be explained at least in part by in vitro activation resulting in dramatically increased levels of T cell REV-T(CSV) receptor expression. In contrast to REV-T(CSV)-transformed lines derived from normal bone marrow, transformed lines derived from activated spleen cells contained substantial numbers of CD4+ cells, all of which expressed TCR-alpha/beta. While transformed T cells derived from bone marrow were stable for extended periods of in vitro culture and were cloned from single cells, transformed T cells from activated spleen were not stable and could not be cloned. We have therefore dissociated the initial transformation of T cells with REV-T(CSV) from the requirements for long-term growth. These results provide the first demonstration of efficient in vitro transformation of chicken T lineage cells by REV-T(CSV). Since productive infection with REV-T(CSV) is not sufficient to promote long-term growth of transformed cells, these results further suggest that immortalization depends not only upon expression of the v-rel oncogene but also on intracellular factor(s) whose expression varies according to the state of T cell physiology and/or activation.  相似文献   

6.
Expression of several members of the Bcl-2 family proteins was investigated by means of both immunohistochemical analysis in 30 invasive ductal adenocarcinomas and 23 intraductal papillary-mucinous tumors (IPMTs) and immunoblot analysis in 6 cancer tissues and 7 pancreatic cancer cell lines. We found that Bcl-2 was expressed in 23%, Bax in 53%, Bcl-X in 90%, and Mcl-1 in 90% of the invasive ductal adenocarcinomas. In intraductal papillary-mucinous adenocarcinomas, the expression rate of Bax was 44% and those of Bcl-XL and Mcl-1 were 88%; these values were higher than those for intraductal papillary-mucinous adenomas. Immunoblot analysis identified Bcl-XL as the predominant form of the Bcl-X protein in both pancreatic cancer tissues and cell lines, and demonstrated that both Bcl-XL and Mcl-1 protein levels were uniformly high in all cell lines. These results suggest that an imbalance between antiapoptosis proteins (such as Bcl-2, Bcl-XL, and Mcl-1) and proapoptotic proteins (such as Bax and Bcl-Xs) is involved in the distinctive biologic features of adenocarcinomas of the pancreas. Furthermore, predominantly high expressions of Bcl-XL and Mcl-1 in intraductal papillary-mucinous adenocarcinomas might be involved in the carcinogenesis in IPMT of the pancreas.  相似文献   

7.
Aberrant regulation of apoptosis may contribute to tumorigenesis. Relative levels of apoptosis regulatory proteins, such as Bcl-2 and Bax as well as interactions of these proteins with other gene products, may contribute to the rate of apoptosis in neoplasia. We examined Bcl-2 expression in 104 squamous cell carcinomas of the head and neck, as well as histologically normal mucosa several centimeters away from the tumor, and in control normal mucosa from patients without cancer. Immunohistochemistry and immunoblotting demonstrated Bcl-2 expression in 30% (31 of 104) of squamous cell carcinoma, with an increase in Bcl-2 protein levels compared with control normal mucosa from noncancer patients. Bcl-2-positive tumors demonstrated a 5-fold decrease in the number of apoptotic cells compared with Bcl-2-negative tumors. Bcl-2 protein expression was associated with poorly differentiated tumor grade but was not correlated with Bax expression or patient survival. These findings demonstrate that Bcl-2 contributes to apoptosis in normal and transformed squamous epithelium.  相似文献   

8.
To understand the nature and extent of oncogene involvement in the development of neoplasia, an experimental model of goat ovarian granulosa cells stimulated by LH was chosen. In the course of these studies, several cell lines were developed which were essentially non-tumorigenic primary cell lines. One of them, however, was spontaneously transformed being immortalized and tumorigenic. These cell lines, transformed and non-transformed, should serve as contralateral cell lines to study differential oncogene expression in hormonally induced cell proliferation, and elucidate possible hormone-oncogene nexus which may be operative in the genesis of cancer. In the present report, we have studied expression of c-myc, c-ras, c-myb, c-fos and c-sis cellular oncogenes in the cell lines by immunocytochemistry using monoclonal antibodies. In the rest of our text we refer to these cellular oncogenes as oncogenes. The results reveal differential expression of the oncogenes. The striking difference between the non-transformed AIMS/GRXII cells and the transformed AIMS/GRXVIII cells was the absence of ras protein expression in the transformed AIMS/GRXVIII cells which intensely expressed the c-myc, c-myb, c-fos, and c-sis proteins. c-ras protein was expressed in the non-transformed AIMS/GRXVIII cell line and primary cultures. c-myc protein was expressed exclusively in the AIMS/GRXVIII transformed cells. The myc activity seen in the transformed cell line may be correlated to cell proliferation. These results show the variation of phenotype in cell lines derived from a single tissue source.  相似文献   

9.
Human lung cancers overexpress several cell-membrane complement inhibitory proteins (CIP). These complement inhibitory proteins are membrane cofactor protein (CD46), decay-accelerating factor (DAF; CD55), and CD59 (protectin). These cell-membrane proteins have a wide normal tissue distribution, are known to protect normal host cells from homologous complement-mediated lysis, and are thought to facilitate tumor escape from immunosurveillance. To study whether proinflammatory cytokines that are involved in cancer growth can modulate cell-membrane CIP expression in lung cancer cells, we studied the effect of interleukin (IL)-1alpha, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma on two human lung cancer cell lines. ChaGo K-1 and NCI-H596 cell lines, undifferentiated carcinoma and lung adenosquamous carcinoma, respectively, were stimulated with different cytokines, and the effects of incubation time and cytokine concentration on cell-membrane CIP expression were studied. Cell-membrane CIP expression was evaluated using flow cytometry and cytokine effect was calculated as percent change in mean fluorescence intensity of each CIP molecule from its untreated control. We found that DAF was the lung cancer cell-membrane CIP molecule that was the most responsive to cytokine stimulation. Maximal stimulatory effect was usually noted 72 h after a cytokine was introduced. In ChaGo K-1 and NCI-H596 lung cancer cell lines, IL-1alpha and TNF-alpha increased DAF expression. IL-1alpha (100 U/ml/72 h) increased DAF expression up to a maximal mean of 45 and 48%, respectively, in comparison with untreated cells. TNF-alpha (1, 000 U/ml/72 h) increased DAF expression up to a mean of 131 and 46%, respectively. IFN-gamma (1 U/ml/72 h) increased DAF expression in NCI-H596 cells up to a mean of 100%, but had a slight inhibitory effect on DAF expression in ChaGo K-1 cells, decreasing expression by a mean of 17% in comparison with untreated cells. We conclude that cell-membrane DAF expression in the studied human lung cancer cell lines is modulated by IL-1alpha, TNF-alpha, and IFN-gamma, and speculate that cytokine-mediated modulation of cell-membrane DAF in human lung cancer cells might affect lung cancer cell biology.  相似文献   

10.
In a previous large scale screen for differentially expressed genes in pancreatic cancer, we identified a gene highly overexpressed in cancer encoding a novel putative transmembrane protein with two Kunitz-type serine protease inhibitor domains. The identified gene named kop (Kunitz domain containing protein overexpressed in pancreatic cancer) was assigned to chromosome 19 in the region 19q13.1. Kop was detected at high levels in pancreatic cancer cell lines and was overexpressed in pancreatic cancer tissues as compared to both, normal pancreas and chronic pancreatitis tissues. Being a member of the Kunitz-type serine protease inhibitor family, this new gene may participate in tumour cell invasion and metastasis and in the development of the marked desmoplastic reaction typical for human pancreatic cancer tissues. In this context, the fact that kop has a putative transmembrane domain may have functional implications of particular interest.  相似文献   

11.
About 90% of human pancreatic cancers carry K-ras point mutation, which may play an important role in tumorigenesis. We investigated the inhibitory effects of anti-sense oligonucleotides targeting K-ras point mutation on the growth of cultured human pancreatic cancer cells. Eight human pancreatic cancer cell lines were screened for K-ras codon 12 point mutations by PCR-RFLP analysis and direct sequencing. Then, 3 cell lines with the major types of K-ras point mutation, i.e.,HuP-T1, HuP-T3 and PANC-1, and 1 without mutation, BxPC-3, were used for the experiments. Seventeen mer anti-sense oligonucleotides were designed, targeting the point mutation of K-ras codon 12, and transfected into the cells by the liposome-mediated method. Cell-growth activities were estimated by MTT assay. Levels of K-ras mRNA expression were determined using quantitative RT-PCR, and K-ras p21 protein synthesis was evaluated with Western blotting. Mutation-matched anti-sense oligonucleotides effectively inhibited the growth of these pancreatic cancer cell lines, except for BxPC-3, by suppressing K-ras mRNA expression and K-ras p21 protein synthesis. Moreover, mutation-matched anti-sense oligonucleotides showed stronger anti-proliferative effects than did mutation-mismatched ones. Our results suggest that anti-sense therapy specific to point mutations of K-ras mRNA is a practical approach to selective suppression of tumor growth, with little effect on normal cells.  相似文献   

12.
13.
14.
We previously reported increased expression of p27Kip1 in a series of human breast cancer cell lines, as compared to cell lines established from normal mammary epithelial cells. These data were surprising because this protein exerts a growth-inhibitory function in normal cells, and p27Kip1 has been proposed as a candidate tumor suppressor gene. A possible explanation for the paradoxical increase in p27Kip1 in the breast cancer cell lines is that they had become refractory to the inhibitory effects of this protein. To address this question, here, we transfected the MCF7 breast cancer cell line and the MCF10F nontumorigenic mammary epithelial cell line with a vector containing the p27Kip1 cDNA to obtain derivatives that express increased levels of p27Kip1. The increased expression of p27Kip1 in both of these cell lines was associated with lengthening of the G1 phase, an increase in the doubling time, a decreased saturation density, and a decreased plating efficiency. In the MCF7 cells, anchorage-independent growth and in vivo tumorigenicity were also suppressed. These effects were associated with decreased cyclin E-associated in vitro kinase activity in both cell lines. The increased expression of p27Kip1 was associated with a decreased level of expression of cyclin D1 in the MCF10F cells but an increased level of the cyclin D1 protein in the MCF7 cell line. Both derivatives expressed slightly increased levels of the cyclin E protein. Thus, breast cancer cells are still responsive to p27Kip1-mediated inhibition of cell growth despite the high basal level of this protein. These results suggest that therapeutic strategies that further increase the level of expression of p27Kip1 or mimic its activity might be useful in cancer therapy.  相似文献   

15.
16.
17.
BACKGROUND: The p53 tumor suppressor gene is mutated in up to 70% of pancreatic adenocarcinomas. We determined the effect of reintroduction of the wild-type p53 gene on proliferation and apoptosis in human pancreatic cancer cells using an adenoviral vector containing the wild-type p53 tumor suppressor gene. METHODS: Transduction efficiencies of six p53-mutant pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-1, CFPAC-1, MIA PaCa-2, and PANC-1) were determined using the reporter gene construct Ad5/CMV/beta-gal. Cell proliferation was monitored using a 3H-thymidine incorporation assay, Western blot analysis for p53 expression was performed, and DNA laddering and fluorescence-activated cell sorter analysis were used to assess apoptosis. p53 gene therapy was tested in vivo in a subcutaneous tumor model. RESULTS: The cell lines varied in transduction efficiency. The MIA PaCa-2 cells had the highest transduction efficiency, with 65% of pancreatic tumor cells staining positive for beta-galactosidase (beta-gal) at a multiplicity of infection (MOI) of 50. At the same MOI, only 15% of the CFPAC-1 cells expressed the beta-gal gene. Adenovirus-mediated p53 gene transfer suppressed growth of all human pancreatic cancer cell lines in a dose-dependent manner. Western blot analysis confirmed the presence of the p53 protein product at 48 hours after infection. DNA ladders demonstrated increased chromatin degradation, and fluorescence-activated cell sorter analysis demonstrated a four-fold increase in apoptotic cells at 48 and 72 hours following infection with Ad5/CMV/p53 in the MIA PaCa-2 and PANC-1 cells. Suppression of tumor growth mediated by induction of apoptosis was observed in vivo in an established nude mouse subcutaneous tumor model following intratumoral injections of Ad5/CMV/p53. CONCLUSIONS: Introduction of the wild-type p53 gene using an adenoviral vector in pancreatic cancer with p53 mutations induces apoptosis and inhibits cell growth. These data provide preliminary support for adenoviral mediated p53 tumor suppressor gene therapy of human pancreatic cancer.  相似文献   

18.
Insulin receptor substrate-2 (IRS-2) is a multisite docking protein implicated in mitogenic signaling after activation of the insulin and insulin-like growth factor (IGF)-I receptors. In the present study, we characterized IRS-2 expression and function in human pancreatic cancer. IRS-2 mRNA and protein were expressed in ASPC-1 and COLO-357 human pancreatic cancer cell lines. Insulin, IGF-I, and IGF-II enhanced the growth of both cell lines, stimulated tyrosine phosphorylation of IRS-2, and increased IRS-2-associated phosphatidylinositol (PI) 3-kinase activity. The mitogenic effects of insulin, IGF-I, and IGF-II were markedly attenuated by the PI 3-kinase inhibitor LY 294002. Northern blot analysis of total RNA extracted from normal and cancerous tissues revealed that IRS-2 mRNA levels were increased in the cancer tissues (P = 0.032). In the normal pancreas, IRS-2 immunoreactivity was present at low levels in some ductal and acinar cells and at moderate levels in a heterogeneous pattern in all of the endocrine islets. In the pancreatic cancers, IRS-2 was abundant in the ductal-like cancer cells. These findings indicate that IRS-2 is overexpressed in human pancreatic cancer and suggest that it may contribute to enhanced mitogenic signaling via the PI 3-kinase pathway, thereby leading to excessive growth stimulation in this malignancy.  相似文献   

19.
20.
In order to study the interrelation and interaction between MDM2 oncogene and wild type p53 in human pancreatic cancer, we studied the expression and amplification of MDM2 oncogene and its antagonistic effect on wild type p53 by use of gene recombination, gene transduction and molecular hybridization techniques. The results showed that MDM2 oncogene could be detected in all 5 pancreatic cell lines, but MDM2 mRNA expression varied in the different cell lines. The recombinant vector pCMV-MDM2 was transduced into PC-2/s-wtp53 cell line (a transformed PC-2 pancreatic carcinoma cell line containing wild type p53 gene). The resultant cell line, PC-2/s-wtp53/pCMV-MDM2 showed rapid cell growth, a rate similar to that of the parent cell line PC-2. Our results verify the fact that MDM2 gene can abrogate the cell growth arrest mediated by wild type p53 and the antagonistic function of wild type p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号