首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the involvement of murine c-Crk, an SH2/SH3 containing adaptor protein, in signaling pathways stimulated by different receptor tyrosine kinases. We show here that c-Crk is associated with components of insulin- and PDGF-dependent signaling pathways. Insulin treatment of murine myoblast cells induces the formation of stable complex of endogenous c-Crk with insulin receptor substrate-1 (IRS-1) mediated via the SH2 domain of Crk. The ligand dependent physical association of c-Crk with IRS-1 is direct. However IRS-1 is also co-precipitated with c-Crk from quiescent L6 cells. The association of IRS-1 with c-Crk in quiescent cells is probably not direct since Far Western blot analysis did not reveal the binding of neither SH2 domain nor amino-terminal SH3 domain of c-Crk to IRS-1 from unstimulated cells. We also show that PDGF treatment of murine myoblast cells induces association of c-Crk with the PDGF receptor and tyrosine phosphorylation of c-Crk. Overexpression of c-Crk enhanced insulin- but not PDGF-induced activation of MAP kinases when compared to parental cell lines. Thus, the formation of the direct IRS-1/Crk complex appears to be crucial for Crk-mediated insulin-induced activation of MAP kinase, whereas Crk is probably involved in other PDGF-induced responses. These data provide support to the hypothesis that insulin and PDGF employ different mechanisms for activation of MAP kinase cascade.  相似文献   

2.
Activation of the endogenous protein kinase Cs in human kidney fibroblast (293) cells was found in the present study to inhibit the subsequent ability of insulin to stimulate the tyrosine phosphorylation of an expressed insulin receptor substrate-1. This inhibition was also observed in an in vitro phosphorylation reaction if the insulin receptor and its substrate were both isolated from cells in which the protein kinase C had been activated. To test whether serine phosphorylation of the insulin receptor substrate-1 was contributing to this process, serine 612 of this molecule was changed to an alanine. The insulin-stimulated tyrosine phosphorylation and the associated phosphatidylinositol 3-kinase activity of the expressed mutant were found to be comparable to those of the expressed wild-type substrate. However, unlike the wild-type protein, activation of protein kinase C did not inhibit the insulin-stimulated tyrosine phosphorylation of the S612A mutant nor its subsequent association with phosphatidylinositol 3-kinase. Tryptic peptide mapping of in vivo labeled IRS-1 and the S612A mutant revealed that PMA stimulates the phosphorylation of a peptide from wild-type IRS-1 that is absent from the tryptic peptide maps of the S612A mutant. Moreover, a synthetic peptide containing this phosphoserine and its nearby tyrosine was found to be phosphorylated by the insulin receptor to a much lower extent than the same peptide without the phosphoserine. Activation of protein kinase C was found to stimulate by 10-fold the ability of a cytosolic kinase to phosphorylate this synthetic peptide as well as the intact insulin receptor substrate-1. Finally, cytosolic extracts from the livers of ob/ob mice showed an 8-fold increase in a kinase activity capable of phosphorylating this synthetic peptide, compared to extracts of livers from lean litter mates. These results indicate that activation of protein kinase C stimulates a kinase which can phosphorylate insulin receptor substrate-1 at serine 612, resulting in an inhibition of insulin signaling in the cell, posing a potential mechanism for insulin resistance in some models of obesity.  相似文献   

3.
In this report, we demonstrate that insulin receptor substrate-2 (IRS-2) is tyrosyl-phosphorylated following stimulation of 3T3-F442A fibroblasts with growth hormone (GH), leukemia inhibitory factor and interferon-gamma. In response to GH and leukemia inhibitory factor, IRS-2 is immediately phosphorylated, with maximal phosphorylation detected at 15 min; the signal is substantially diminished by 60 min. In response to interferon-gamma, tyrosine phosphorylation of IRS-2 was prolonged, with substantial signal still detected at 60 min. Characterization of the mechanism of signaling utilized by GH indicated that tyrosine residues in GH receptor are not necessary for tyrosyl phosphorylation of IRS-2; however, the regions of GH receptor necessary for IRS-2 tyrosyl phosphorylation are the same as those required for JAK2 association and tyrosyl phosphorylation. The role of IRS-2 as a signaling molecule for GH is further demonstrated by the finding that GH stimulates association of IRS-2 with the 85-kDa regulatory subunit of phosphatidylinositol 3'-kinase and with the protein-tyrosine phosphatase SHP2. These results are consistent with the possibility that IRS-2 is a downstream signaling partner of multiple members of the cytokine family of receptors that activate JAK kinases.  相似文献   

4.
Insulin stimulates the tyrosine kinase activity of its receptor, resulting in the phosphorylation of its cytosolic substrate, insulin receptor substrate-1 (IRS-1), which, in turn, associates with phosphatidylinositol 3-kinase (PI 3-kinase), thereby activating the latter. Aging is associated with insulin resistance, but the exact molecular mechanism is unknown. In the present study, we examined the levels and phosphorylation status of the insulin receptor and IRS-1 as well as the association between IRS-1 and PI 3-kinase in the liver and muscle of 2-, 5-, 12-, and 20-month-old rats. There were no changes in the insulin receptor concentration in the liver and muscle of rats 2-. 5-, 12-, and 20-month rats. There were no changes in the insulin receptor concentration in the liver and muscle of rats 2-20 months old, as determined by immunoblotting using antibody to the COOH-terminus of the receptor. However, insulin stimulation of receptor autophosphorylation, as determined by immunoblotting with antiphosphotyrosine antibody was reduced by 25% (P < 0.05) in the liver and muscle of rats at 20 months. Interestingly, IRS-1 protein levels decrease at an early stage (5 months) by 58 +/- 9%, (P < 0.01) and remained at low levels thereafter in muscle, but not in liver. In samples previously immunoprecipitated with anti-IRS-1 antibody and blotted with antiphosphotyrosine antibody, there were 60 +/- 9% (P < 0.001) and 92 +/- 4% (P < 0.001) decreases in the insulin-stimulated IRS-1 association with PI 3-kinase was decreased by 70 +/- 2% in the liver and muscle, respectively, of 20-month rats. The insulin-stimulated IRS-1 association with PI 3-kinase was decreased by 70 +/- 2% in the liver (P < 0.001) and by 98 +/- 3% (P < 0.001) in the muscle of 20-month-old rats, with no change in the PI 3-kinase protein levels. The phosphotyrosine-associated PI 3-kinase activity after insulin stimulation was dramatically reduced in liver and muscle of 20-month-old rats compared to that in 2-month-old rats. Finally, by immunoprecipitation, the detection of insulin-stimulated IRS-2 phosphorylation followed the same pattern as that for IRS-1 in both liver of 2- and 20-month-old rats. These data suggest that changes in the early steps of insulin signal transduction may have an important role in the insulin resistance observed in old animals.  相似文献   

5.
Insulin receptor substrate-1 (IRS-1) and Shc are two proteins implicated in intracellular signal transduction. They are activated by an increasing number of extracellular signals, mediated by receptor tyrosine kinases, cytokine receptors, and G protein-coupled receptors. In this study we demonstrate that Shc interacts directly with IRS-1, using the yeast two-hybrid system and an in vitro interaction assay. Deletion analysis of the proteins to map the domains implicated in this interaction shows that the phosphotyrosine binding domain of Shc binds to the region of IRS-1 comprising amino acids 583-661. An in vitro association assay, performed with or without activation of tyrosine kinases, gives evidence that tyrosine phosphorylation of IRS-1 and Shc drastically improves the interaction. Site-directed mutagenesis on IRS-1 583-693 shows that the asparagine, but not the tyrosine residue of the N625GDY628motif domain, is implicated in the IRS-1-Shc-phosphotyrosine binding interaction. Mutation of another tyrosine residue, Tyr608, also induced a 40% decrease in the interaction. This study, describing a phosphotyrosine-dependent interaction between IRS-1 and Shc, suggests that this association might be important in signal transduction.  相似文献   

6.
Insulin resistance is often associated with atherosclerotic diseases in subjects with obesity and impaired glucose tolerance. This study examined the effects of insulin resistance on coronary risk factors in IRS-1 deficient mice, a nonobese animal model of insulin resistance. Blood pressure and plasma triglyceride levels were significantly higher in IRS-1 deficient mice than in normal mice. Impaired endothelium-dependent vascular relaxation was also observed in IRS-1 deficient mice. Furthermore, lipoprotein lipase activity was lower than in normal mice, suggesting impaired lipolysis to be involved in the increase in plasma triglyceride levels under insulin-resistant conditions. Thus, insulin resistance plays an important role in the clustering of coronary risk factors which may accelerate the progression of atherosclerosis in subjects with insulin resistance.  相似文献   

7.
8.
The insulin receptor substrate-1 (IRS-1) is the major intracellular substrate of insulin and insulin-like growth factor-I (IGF-I) receptor tyrosine kinase activity, and this protein has been found to be overexpressed in human hepatocellular carcinomas. IRS-1 contains several src homology 2 (SH2) binding motifs that interact following tyrosyl phosphorylation with SH2-containing proteins, and this interaction may be essential for transmitting the growth signal from the cell surface to the nucleus. We have previously reported that overexpression of IRS-1 may induce neoplastic transformation of NIH 3T3 cells. This study examines the role of two SH2-containing molecules, namely the Grb2 adapter and Syp tyrosine phosphatase proteins as important components of the cellular transforming activity of IRS-1. Mutations of tyrosine 897 in the YVNI motif (Y897F) and of tyrosine 1180 in the YIDL motif (Y1180F) reduced the intracellular interaction of IRS-1 with Grb2 and Syp proteins, respectively. Furthermore, a single mutation at either Phe-897 or Phe-1180 substantially but not completely reduced IGF-I-dependent transforming activity of IRS-1, whereas creation of a double mutation of both tyrosine residues (Y897F/Y1180F) strikingly attenuated the transforming activity of IRS-1. Stable expression of the IRS-1 mutant constructs in NIH 3T3 cells was associated with a lower level of activation of the mitogen-activated protein kinase kinase (MAPKK)/MAPK cascade following IGF-I stimulation compared with cells stably transfected with the "wild-type" IRS-1 gene. These results suggest that IRS-1-induced cellular transformation requires an interaction with both Grb2 and Syp signal transduction molecules since neither interaction alone appears to be required, and this event subsequently leads to activation of the MAPKK/MAPK cascade.  相似文献   

9.
The protein product of the c-Cbl proto-oncogene is prominently tyrosine phosphorylated in response to insulin in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. After insulin-dependent tyrosine phosphorylation, c-Cbl specifically associates with endogenous c-Crk and Fyn. These results suggest a role for tyrosine-phosphorylated c-Cbl in 3T3-L1 adipocyte activation by insulin. A yeast two-hybrid cDNA library prepared from fully differentiated 3T3-L1 adipocytes was screened with full-length c-Cbl as the target protein in an attempt to identify adipose-specific signaling proteins that interact with c-Cbl and potentially are involved in its tyrosine phosphorylation in 3T3-L1 adipocytes. Here we describe the isolation and the characterization of a novel protein that we termed CAP for c-Cbl-associated protein. CAP contains a unique structure with three adjacent Src homology 3 (SH3) domains in the C terminus and a region showing significant sequence similarity with the peptide hormone sorbin. Both CAP mRNA and proteins are expressed predominately in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. CAP associates with c-Cbl in 3T3-L1 adipocytes independently of insulin stimulation in vivo and in vitro in an SH3-domain-mediated manner. Furthermore, we detected the association of CAP with the insulin receptor. Insulin stimulation resulted in the dissociation of CAP from the insulin receptor. Taken together, these data suggest that CAP represents a novel c-Cbl binding protein in 3T3-L1 adipocytes likely to participate in insulin signaling.  相似文献   

10.
11.
Signaling through the insulin receptor tyrosine kinase involves its autophosphorylation in response to insulin and the subsequent tyrosine phosphorylation of substrate proteins such as insulin receptor substrate-1 (IRS-1). In basal 3T3-L1 adipocytes, IRS-1 is predominantly membrane-bound, and this localization may be important in targeting downstream signaling elements that mediate insulin action. Since IRS-1 localization to membranes may occur through its association with specific membrane proteins, a 3T3-F442A adipocyte cDNA expression library was screened with non-tyrosine-phosphorylated, baculovirus-expressed IRS-1 in order to identify potential IRS-1 receptors. A cDNA clone that encodes sigma3A, a small subunit of the AP-3 adaptor protein complex, was demonstrated to bind IRS-1 utilizing this cloning strategy. The specific interaction between IRS-1 and sigma3A was further verified by in vitro binding studies employing baculovirus-expressed IRS-1 and a glutathione S-transferase (GST)-sigma3A fusion protein. IRS-1 and sigma3A were found to co-fractionate in a detergent-resistant population of low density membranes isolated from basal 3T3-L1 adipocytes. Importantly, the addition of exogenous purified GST-sigma3A to low density membranes caused the release of virtually all of the IRS-1 bound to these membranes, while GST alone had no effect. These results are consistent with the hypothesis that sigma3A serves as an IRS-1 receptor that may dictate the subcellular localization and the signaling functions of IRS-1.  相似文献   

12.
Insulin receptor substrate-2 (IRS-2) is a multisite docking protein implicated in mitogenic signaling after activation of the insulin and insulin-like growth factor (IGF)-I receptors. In the present study, we characterized IRS-2 expression and function in human pancreatic cancer. IRS-2 mRNA and protein were expressed in ASPC-1 and COLO-357 human pancreatic cancer cell lines. Insulin, IGF-I, and IGF-II enhanced the growth of both cell lines, stimulated tyrosine phosphorylation of IRS-2, and increased IRS-2-associated phosphatidylinositol (PI) 3-kinase activity. The mitogenic effects of insulin, IGF-I, and IGF-II were markedly attenuated by the PI 3-kinase inhibitor LY 294002. Northern blot analysis of total RNA extracted from normal and cancerous tissues revealed that IRS-2 mRNA levels were increased in the cancer tissues (P = 0.032). In the normal pancreas, IRS-2 immunoreactivity was present at low levels in some ductal and acinar cells and at moderate levels in a heterogeneous pattern in all of the endocrine islets. In the pancreatic cancers, IRS-2 was abundant in the ductal-like cancer cells. These findings indicate that IRS-2 is overexpressed in human pancreatic cancer and suggest that it may contribute to enhanced mitogenic signaling via the PI 3-kinase pathway, thereby leading to excessive growth stimulation in this malignancy.  相似文献   

13.
A novel Xenopus insulin receptor substrate cDNA was isolated by hybridization screening using the rat insulin receptor substrate-1 (IRS-1) cDNA as a probe. The xIRS-u cDNA encodes an open reading frame of 1003 amino acids including a putative amino-terminal pleckstrin homology (PH) domain and phosphotyrosine-binding (PTB) domain. The carboxy terminus of xIRS-u contains several potential Src homology 2 (SH2)-binding sites, five of which are in the context of YM/LXM (presumptive binding sites for phosphatidylinositol 3-kinase). It also contains a putative binding site for Grb2 (YINID). Pair-wise amino acid sequence comparisons with the previously identified xIRS-1 and the four members of the mammalian IRS family (1 through 4) indicated that xIRS-u has similar overall sequence homology (33-45% identity) to all mammalian IRS proteins. In contrast, the previously isolated xIRS-1 is particularly similar (67% identical) to IRS-1 and considerably less similar (31-46%) to the other IRS family members (2 through 4). xIRS-u is also distinct from xIRS-1, having an overall sequence identity of 47%. These sequence analyses suggest that xIRS-u is a novel member of the IRS family rather than a Xenopus homolog of an existing member. Microinjection of mRNA encoding a Myc-tagged xIRS-u into Xenopus oocytes resulted in the expression of a 120-kDa protein (including 5 copies of the 13-amino acid Myc tag). The injection of xIRS-u mRNA accelerated insulin-induced MAP kinase activation with a concomitant acceleration of insulin-induced oocyte maturation. An aminoterminal deletion of the PH domain (xIRS-u deltaPH) significantly reduced the ability of xIRS-u to potentiate insulin signaling. In contrast to the full-length protein, injection of xIRS-u (1-299), which encoded the PH and PTB domain, or xIRS-u (1-170), which encoded only the PH domain, blocked insulin signaling in Xenopus oocytes. Finally, xIRS-u (119-299), which had a truncated PH domain and an intact PTB domain, had no effect on insulin signaling. This is the first report that the PH domain of an IRS protein can function in a dominant negative manner to inhibit insulin signaling.  相似文献   

14.
We compared the interaction between the insulin receptor (IR) and the IR substrate (IRS) proteins IRS-1 and IRS-2) using the yeast two-hybrid system. Both IRS proteins interact specifically with the cytoplasmic portion of the IR and the related insulin-like growth factor-I receptor, and these interactions require receptor tyrosine kinase activity. Alignment of IRS-1 and IRS-2 revealed two conserved domains at the NH2 terminus, called IH1PH and IH2PTB, which resemble a pleckstrin homology (PH) domain and a phosphotyrosine binding (PTB) domain, respectively. The IH2PTB binds to the phosphorylated NPXY motif (Tyr-960) in the activated insulin receptor, providing a specific mechanism for the interaction between the receptor and IRS-1. Although the IH2PTB of IRS-2 also interacts with the NPEY motif of the insulin receptor, it is not essential for the interaction between the insulin receptor and IRS-2 in the yeast two-hybrid system. IRS-2 contains another interaction domain between residues 591 and 786, which is absent in IRS-1. This IRS-2-specific domain is independent of the IH2PTB and does not require the NPEY motif; however, it requires a functional insulin receptor kinase and the presence of three tyrosine phosphorylation sites in the regulatory loop (Tyr-1146, Tyr-1150, and Tyr-1151). Importantly, this novel domain mediates the association between IRS-2 and insulin receptor lacking the NPXY motif and may provide a mechanism by which the stoichiometry of regulatory loop autophosphorylation enhances IRS-2 phosphorylation.  相似文献   

15.
Rat 3Y1 cells have endogenous insulin-like growth factor-1 receptors and insulin receptor substrate (IRS)-2, but lack both insulin receptor (IR) and IRS-1. To investigate the role of IR and IRS-1 in effects of insulin, we transfected IR and IRS-1 expression plasmids into cells and reconstituted the insulin signaling pathways. 3Y1 cells stably expressing the c-myc epitope-tagged glucose transporter type 4 (3Y1-GLUT4myc) exhibit no effects of insulin, at physiological concentrations. The 3Y1-GLUT4myc-IR cells expressing GLUT4myc and IR responded to phosphatidylinositol 3,4, 5-trisphosphate (PI-3,4,5-P3) accumulation, Akt activation, the stimulation of DNA synthesis, and membrane ruffling but not to glycogen synthesis, glucose uptake, or GLUT4myc translocation. The further expression of IRS-1 in 3Y1-GLUT4myc-IR cells led to stimulation of glycogen synthesis but not to glucose uptake or GLUT4myc translocation in response to insulin, although NaF or phorbol 12-myristate 13-acetate did trigger GLUT4myc translocation in the cells. These results suggest that, in rat 3Y1 cells, (i) IRS-1 is essential for insulin-stimulated glycogen synthesis but not for DNA synthesis, PI-3,4,5-P3 accumulation, Akt phosphorylation, or membrane ruffling, and (ii) the accumulation of PI-3,4,5-P3 and activation of Akt are insufficient for glycogen synthesis, glucose uptake or for GLUT4 translocation.  相似文献   

16.
Insulin-like growth factor I (IGF-I) is a potent neurotropic factor promoting the differentiation and survival of neuronal cells. SH-SY5Y human neuroblastoma cells are a well characterized in vitro model of nervous system growth. We report here that IGF-I stimulated the tyrosine phosphorylation of the type I IGF receptor (IGF-IR) and insulin receptor substrate-2 (IRS-2) in a time- and concentration-dependent manner. These cells lacked IRS-1. After being tyrosine phosphorylated, IRS-2 associated transiently with downstream signaling molecules, including phosphatidylinositol 3-kinase (PI 3-K) and Grb2. Treatment of the cells with PI 3-K inhibitors (wortmannin and LY294002) increased IGF-I-induced tyrosine phosphorylation of IRS-2. We also observed a concomitant increase in the mobility of IRS-2, suggesting that PI 3-K mediates or is required for IRS-2 serine/threonine phosphorylation, and that this phosphorylation inhibits IRS-2 tyrosine phosphorylation. Treatment with PI 3-K inhibitors induced an increased association of IRS-2 with Grb2, probably as a result of the increased IRS-2 tyrosine phosphorylation. However, even though the PI 3-K inhibitors enhanced the association of Grb2 with IRS-2, these compounds suppressed IGF-I-induced mitogen-activated protein kinase activation and neurite outgrowth. Together, these results indicate that although PI 3-K participates in a negative regulation of IRS-2 tyrosine phosphorylation, its activity is required for IGF-IR-mediated mitogen-activated protein kinase activation and neurite outgrowth.  相似文献   

17.
18.
Previous studies have shown that a human insulin receptor lacking the COOH-terminal 43-amino acid domain (HIR delta CT) displays a compromised ability to stimulate glucose transport and glycogen synthase, whereas mitogenic signaling and stimulation of the insulin receptor tyrosine kinase activity remain intact (Maegawa, H., McClain, D. A., Freidenberg, G., Olefsky, J. M., Napier, M., Lipari, T., Dull, T. J., Lee, J., and Ullrich, A. (1988) J. Biol. Chem. 263, 8912-8917). In this study, we examined the effect of insulin on protein phosphatase 1 (PP-1) activity and phosphorylation in cells expressing wild-type human insulin receptor (HIRc) and HIR delta CT cells using phosphorylase alpha as substrate in the presence of 3 nM okadaic acid. Basal PP-1 activity was significantly lower in HIR delta CT than in HIRc cells (p < 0.05). Insulin stimulated PP-1 activity in HIRc cells (25-30% increase over basal activity) in a time- and dose-dependent manner. Insulin failed to stimulate PP-1 activity in HIR delta CT cells. Western blotting with the catalytic subunit antibody and the regulatory subunit antibody revealed similar amounts of the 37-kDa band (catalytic subunit) and the 160-kDa band (presumed regulatory subunit) in HIRc and HIR delta CT cells. We conclude that the COOH-terminal domain of the insulin receptor is an important element in mediating the effect of insulin on PP-1 and suggest that activation of PP-1 may be linked to signaling insulin's metabolic actions.  相似文献   

19.
Increased mobilization of non-esterified fatty acids (NEFA) from visceral as opposed to peripheral fat depots can lead to metabolic disturbances because of the direct portal link between visceral fat and the liver. Compared with peripheral fat, visceral fat shows a decreased response to insulin. The mechanisms behind these site variations were investigated by comparing insulin action on NEFA metabolism with insulin receptor signal transduction through the insulin receptor substrate-1 (IRS-1) pathway in omental (visceral) and subcutaneous human fat obtained during elective surgery. Insulin inhibited lipolysis and stimulated NEFA re-esterification. This was counteracted by wortmannin, an inhibitor of phosphaditylinositol (PI) 3-kinase. The effects of insulin on antilipolysis and NEFA re-esterification were greatly reduced in omental fat cells. Insulin receptor binding capacity, mRNA and protein expression did not differ between the cell types. Insulin was four times more effective in stimulating tyrosine phosphorylation of the insulin receptor in subcutaneous fat cells (p < 0.001). Similarly, insulin was two to three times more effective in stimulating tyrosine phosphorylation of IRS-1 in subcutaneous fat cells (p < 0.01). This finding could be explained by finding that IRS-1 protein expression was reduced by 50 +/- 8% in omental fat cells (p < 0.01). In omental fat cells, maximum insulin-stimulated association of the p85 kDa subunit of PI 3-kinase to phosphotyrosine proteins and phosphotyrosine associated PI 3-kinase activity were both reduced by 50% (p < 0.05 or better). Thus, the ability of insulin to induce antilipolysis and stimulate NEFA re-esterification is reduced in visceral adipocytes. This reduction can be explained by reduced insulin receptor autophosphorylation and signal transduction through an IRS-1 associated PI 3-kinase pathway in visceral adipocytes.  相似文献   

20.
The kinase negative aminoterminal domain of c-Raf-1 expressed as glutathione S-transferase fusion protein was phosphorylated in vitro after treatment with lysates from A431 cells and subsequent in vitro protein kinase assay. This phosphorylation was independent of stimulation of the cells with EGF; it occurred exclusively on serine and was mapped to Ser259. The identical site of c-Raf-1 was phosphorylated in A431 cells by metabolic labelling in vivo. The kinase binding domain was mapped by various GST-Raf deletion mutants to c-Raf-1 aminoacid residues 181 to 255.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号