首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
表面活性剂对高速Zn—SiO2复合镀层的影响   总被引:5,自引:0,他引:5  
采用实验室高速复合镀装置,研究向Zn-SiO2复合镀液中分别引入表面活性剂DTAB和POELA,对Zn-SiO2镀层中SiO2复合量和镀层表面形貌的影响,确定了理想的表面活性剂加入范围,由此获得了表面凹凸状和复事量得到显著改善的复合镀层。  相似文献   

2.
Zn—SiO2复合镀工艺研究   总被引:6,自引:3,他引:6  
李丽华  吴继勋 《电镀与涂饰》1995,14(3):31-33,11
采用循环电镀实验装置,研究了硫酸盐体系电沉积Zn-SiO2复合镀层的工艺。探讨了镀液中的SiO2加入量、阴极电流密度、pH值等对镀层中SiO2含量、阴极电流效率、镀层微观形貌的影响,确定了Zn-SiO2得合镀最佳工艺参数。  相似文献   

3.
表面活性剂在复合电镀中作用研究   总被引:7,自引:0,他引:7  
介绍了几种阳离子型、阴离子型、两性表面活性剂于Sn-Ni-ZrO2、Ni-Al2O3、Ni-Y2O3、Zn-Al等复合电镀系中,对复合量α的影响。  相似文献   

4.
TiO_2对PbO-ZnO-B_2O_3-SiO_2系统玻璃析晶性能的影响王志强,陈一鹏(大连轻工业学院116034)(齐齐哈尔轻工业学院)InfluenceofTiO_2ontheCrystallizationofPbO-ZnO-B2O3-SiO2Sy...  相似文献   

5.
含SiC最高达11%的Ni-SiC复合镀层的镀液配方及操作条件为:Ni(SO_3.NH_2)_2·4H_2O410,NiCl_2·6H_2O10,H_3BO_350,OP-100.4及SiC(3μm)20-120g/L,pH4,55±2℃,5A/dm ̄2,需搅拌.  相似文献   

6.
涂敷型铬酸盐钝化膜的结构与耐蚀性   总被引:1,自引:0,他引:1  
采用SRD,EDXA,GDS等方法研究了镀锌钢板表面涂敷型CrO3-H3PO4-SiO2系钝化膜的成分与结构。该钝化膜是一种由CrO3,Cr(OH)3,CrOOH,ZnCrO4,ZnSiO3,Zn3(PO4)2,CrPO4和SiO2组成的凝胶网络状结构的涂敷型复合转化膜。探讨了其耐蚀机理,中性盐雾试验表明:该钝化膜的耐蚀性大大优于CrO3-SiO2系钝化膜。  相似文献   

7.
采用水热法合成了Zn2+离子掺杂的TiO2纳米粒子(掺杂量0.5%);并用光电化学方法研究了 Ru(bPy)2(NCS)2(bpy—2,2’-bipydine-4,4'-dicarboxylic acid)分别敏化 Zn~2+掺杂的 TiO_2电极和 PbS/Zn~2+-TiO_2复合半导体纳米多孔膜电极的光电化学行为.实验证明Ru(bpy)2(NCS)2敏化 PbS/Zn2+-TiO_2复合半导体纳米多孔膜电极比单独敏化 Zn~2+-TiO_2电极的光电效果好,且敏化电极的光电流产生的起始波长都比 Zn2+-TiO2电极向长波方向移动;在 360~600 nm范围内, Ru(bpy)2(NCS)2敏化 PbS/Zn2+-TiO_2复合半导体纳米多孔膜电极比单独敏化Zn~2+掺杂TiO~2电极的效果更好.  相似文献   

8.
以Sn-Ni合金电镀为基础,复合ZrO_2微粒,从而使Sn-Ni合金镀层的耐磨、机械强度性能大幅度提高。研究了复合电镀工艺最佳条件和影响镀层因素,并在理论上进行探讨。还通过x衍射手段,证明在Sn-Ni合金镀层中引入ZrO_2微粒,不会改变镀层的结构。  相似文献   

9.
Ni-W/F-Al_2O_3-SiO_2催化剂的表面吸附维朱建军,林西平(江苏石油化工学院,化工系,常州,213016)关键词表面吸附,分形维,Ni-W/F-Al_2O_3-SiO_2催化剂1引言催化现象与多相催化剂的表面性质密切相关,催化剂表面形状是影响...  相似文献   

10.
(Zn-Co)-TiO2复合电镀的工艺研究   总被引:6,自引:0,他引:6  
研究了微酸性氯化物体系中(Zn-Co)-TiO2复合电镀的工艺,探讨了镀液组成及工艺条件对复合镀层中Co及TiO2含量的影响,得到了(Zn-Co)-TiO2复合电镀的最佳工艺。并对(Zn-Co)-TiO2复合镀层的耐蚀性进行了考察,与Zn-Co合金镀层和锌镀层的耐蚀性进行了对比。  相似文献   

11.
Ni-P-纳米金刚石化学复合镀研究   总被引:4,自引:0,他引:4  
采用制备的粒度150 nm以内的复合镀用纳米金刚石悬浮液进行了Ni-P-纳米金刚石化学复合镀研究,研究了工艺条件包括纳米金刚石加入量、搅拌方式、离子型和非离子型表面活性剂及其组合的加入对复合镀镀速和镀层性能的影响。结果表明:纳米化学复合镀要求镀液有更好的稳定性;镀速与搅拌方式有关,并且随纳米金刚石的加入而提高;组合型表面活性剂对复合镀层性能提高明显;表面形貌分析观察到镀层中纳米金刚石分布均匀,颗粒在100~200 nm左右。  相似文献   

12.
Magnesium and its alloys corrode rapidly in the electrolyte bath. Surfactants while used extensively as surface active agents in the electrolyte bath, have been little studied on magnesium surfaces. The influence of surfactants cetyltrimethyl ammonium bromide (CTAB) and sodium lauryl sulfate (SLS) on the surface properties such as roughness, morphology and topography of electroless Ni–P deposits on magnesium alloy was researched. The research reveals that the surfactant solutions has significant influence on the composition of coating, surface roughness and surface morphology. In addition, it has marginal effect on the microhardness. Electroless coatings with addition of surfactants produce a smooth surface and average roughness value of 1.412 μm for CTAB and 1.789 μm for SLS, which are less than the value (2.98 μm) without surfactant addition. There was a significant improvement in the rate of deposition. However, the surfactants influence reached maximum at critical micelle concentration and above this value it gets stabilized. The initial structure appears to be dependent upon the percent occluded surfactants. The surface microstructures are discussed in line with the experimental observations.  相似文献   

13.
段辉  汪厚植  熊征蓉  赵雷  顾华志 《化工进展》2006,25(11):1320-1323
在醇溶性氟化聚合物(FR)溶液中,以正硅酸乙酯(TEOS)和甲基三乙氧基硅烷(MTES)为前体,并掺杂聚四氟乙烯(PTFE),在酸性和水量不足的条件下,得到了均匀的复合溶胶。涂敷后,经表面凝胶化技术处理,使涂层表面得到微米级PTFE粒子和纳米级SiO2粒子相结合的微米纳米阶层结构。XPS证实了凝胶化只在涂层表面发生,SEM观察到涂层表面的形貌与荷叶表面极其相似,该方法可用于制备超疏水性功能涂层材料。  相似文献   

14.
The beneficial role of silica nanoparticles addition as reinforcing agent on the various properties of the novel developed Ni-Ba-B coating was highlighted. Barium was considered as third element to act as an inhibiting alloying element for anodic passivation purposes. The ternary Ni-Ba-B coatings in three different concentrations of silica nanoparticles (0.5, 1.0 and 2.0 g/L) were coated on St 37 steel substrate in the presence of sodium dodecyl sulfate (SDS). The effect of nanoparticles on morphology and structure was investigated by FE-SEM, XRD and AFM tests. The nodularity and surface roughness of the coating increased by the presence of SiO2 nanoparticles in the electroless bath. The nanocomposite coating has amorphous and crystalline phases and its XRD peak at 44.50 is slightly sharper than the composite coating. DSC thermogram showed two exothermic peaks demonstrating its phase transformations. The WCA value of coating was confirmed its hydrophilicity property. Results also confirmed that the existence of silica nanoparticles results in an increase in the microhardness and corrosion resistance which may be attributed to the distribution of silica nanoparticles into Ni-Ba-B matrix.  相似文献   

15.
以获得纳米二氧化硅改性阴极电泳漆为目的,用硅烷偶联剂在水介质中分散纳米SiO2粉体,通过分散液的吸光度来评价分散效果.然后将分散后的纳米粉体添加到阴极电泳漆中得到纳米改性电泳漆.试片经磷化-电泳涂装后得到复合涂层,并对复合涂层的耐蚀性能进行评价.金相显微观测表明,纳米改性电泳漆膜表面有较均匀的小突起,而未改性复合膜层表面比较光滑.吸水性测试表明,与未改性复合漆膜相比,改性后的复合涂层漆膜疏水性能有一定提高.耐酸、碱性试验表明,改性复合膜层的耐酸性明显优于未改性复合膜层,两种复合膜层的耐碱性都较好.  相似文献   

16.
为了进一步提高Ni-W-P合金镀层的硬度和耐蚀性,用脉冲电沉积法制备了(Ni-W-P)-TiO2复合镀层,并研究了镀液中TiO2加入量对镀层硬度和表面形貌的影响,且通过极化曲线和电化学阻抗谱研究了镀层在3.5%NaCl溶液中的耐蚀性能。结果表明,(Ni-W-P)-TiO2复合镀层的性能优于Ni-W-P镀层,而当镀液中TiO2质量浓度为6g/L时,复合镀层的硬度较高,表面形貌及耐蚀性能较优。自腐蚀电位较正,腐蚀电流密度较小,极化电阻较大,其交流阻抗谱对应的电阻值也较大。  相似文献   

17.
采用复合电镀技术制备了A u-S iO2纳米微粒复合镀层,研究了镀液中S iO2纳米粉体的浓度对A u-S iO2纳米微粒复合镀层结构与性能的影响,并用扫描电子显微镜(SEM)及能谱仪(EDX)对复合镀层进行了表面形貌和能谱分析,使用X-射线衍射仪(XRD)测试分析了粉体对金镀层组织结构的影响。结果表明,随着镀液中S iO2浓度的增加,镀层中S iO2含量与镀层硬度随之增加,在镀液中S iO2质量浓度为15 g/L时,两者出现最大值;另外S iO2粉体的加入细化了复合镀层的结晶结构。  相似文献   

18.
朱文澄  桂雪峰  李志华  涂园园  林树东  胡继文 《精细化工》2021,38(10):2050-2056,2116
使用十八烷基三甲氧基硅烷(OTMS)对纳米SiO2进行表面疏水改性,将得到的改性纳米SiO2(OTMS-SiO2)添加到有机硅树脂(SI)中,然后采用两步法在聚乙烯(PE)薄膜表面固化制备了复合涂层SI/OTMS-SiO2.通过FTIR、1HNMR、29SiNMR、TGA对OTMS-SiO2及复合涂层进行了表征,采用接触角测量仪、SEM、AFM对复合涂层疏水特性和形貌进行了测试和观察,最后对复合涂层的耐磨性和附着力进行了分析.结果表明,SiO2表面成功引入了OTMS,且OTMS-SiO2均匀附着在硅树脂涂层上,增加了表面粗糙度,得到了PE基固化超疏水复合涂层.当OTMS-SiO2添加量为正己烷质量的8%时,制得的复合涂层的水接触角为154°,滚动角为7°,并具有良好的耐磨性,其附着力可达4A等级.  相似文献   

19.
The morphology of hybrid coatings based on polyester, melamine resin, and various amounts of silica has been investigated, and the hardness and scratch resistance were determined. By increasing silica content, an increase of silica particles in size and number was observed. Small silica particles were preferentially present at the surface. The influence of the silica content on the K?nig hardness, indentation hardness, and elastic modulus was minor. The improved scratch resistance determined for a hybrid coating with 11.4 wt% silica, compared to a similar organic coating without silica, was attributed to small silica particles preferentially present at the surface. Presented at the 26th International Waterborne, High-Solids, and Powder Coatings Symposium, February 10–12, 1999, New Orleans, LA. Dept. of Polymer Chemistry and Coatings Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. Materials Division, Dept. of Materials Chemistry and Coatings, P.O. Box 595, 5600 AN Eindhoven, The Netherlands.  相似文献   

20.
The present work deals with the preparation of stable alumina + silica suspensions with high solid loading for the production of spray-dried composite powders. These composite powders are to be used for reactive plasma spraying whereby the formation of mullite and the coating on a ceramic substrate are achieved in a single step process. Electrostatic stabilisation of alumina and silica suspensions has been studied as a function of pH. Silica suspensions are most stable at basic pH whereas alumina suspensions are stable at acidic pH. The addition of ammonium polymethacrylate (APMA) makes it possible to stabilise alumina and prepare a stable 50 wt% alumina + silica suspension at pH 10. The optimum amounts of dispersant and binder have been determined by zeta potential, viscosity and sedimentation measurements. Spray drying of the suspension yields composite powders whose morphology, size distribution and flowability have been characterized before realizing reactive plasma spraying tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号