首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
粘滞阻尼墙动力性能试验研究   总被引:2,自引:1,他引:1  
粘滞阻尼墙是近年研制的新型粘滞阻尼装置。本文通过水平快速周期性加载试验,对粘滞阻尼墙的动力性能进行了全面研究,探讨了环境温度、位移幅值及加载频率对粘滞阻尼墙动力性能的影响规律,推导出粘滞阻尼墙阻尼力与加载速度间的相关关系,并提出了粘滞阻尼墙阻尼力的理论计算公式。研究表明,新型粘滞阻尼墙的动力性能受环境温度、位移幅值、加载频率的影响较大,本文提出的阻尼力理论计算公式可靠,可应用于工程实际。  相似文献   

2.
欧谨  王相智 《建筑结构》2012,(3):61-64,151
设计了三榀不同类型的钢框架结构模型,通过对模型的快速水平周期加载试验,进行了设置粘滞阻尼墙钢框架结构减振性能的比较和分析。对设置阻尼墙后钢框架结构的破坏形态、滞回特性、骨架曲线、阻尼力、抗剪刚度、耗能性能、等效阻尼比等进行了研究,对阻尼墙不同布置方式对上述各项性能的影响进行了分析,并对上述各项性能与加载频率、位移幅值的变化关系进行了探讨。结果表明,设置阻尼墙后,钢框架结构的耗能能力和阻尼均有显著提高,结构的抗剪刚度增加,结构的地震响应显著减小。设置阻尼墙钢框架结构的滞回特性与频率、位移幅值相关。阻尼墙不同布置方式对结构滞回特性的影响不明显。  相似文献   

3.
为了解决传统黏滞阻尼墙位移较大时阻尼力较小,且无法为结构提供刚度的问题,设计了一种黏塑性阻尼墙。对传统黏滞阻尼墙和黏塑性阻尼墙的对比试件进行了滞回试验,检验了黏塑性阻尼墙小震下黏滞耗能、大震下黏滞耗能与金属耗能共同作用的特点。分析了螺栓滑移对刚度的影响,证明了黏滞耗能和金属耗能的耗能量相匹配可以有效增大等效阻尼比,降低地震反应。讨论了金属阻尼器工作间隙的影响,建议工作间隙值取为黏塑性阻尼墙高度的1/250,并建议将最大位移为黏塑性阻尼墙高度的1/100处,两种耗能相等时的黏滞系数作为合理黏滞系数。  相似文献   

4.
针对阻尼墙耗能效率问题提出横向位移放大与纵向多腔放大概念,并以此设计了3种高效耗能黏滞阻尼墙装置,即单腔放大式黏滞阻尼墙(SADW)、多腔放大式黏滞阻尼墙(MADW)和多腔相对放大式黏滞阻尼墙(RADW)。根据3种阻尼墙的构造特点,分析了横向位移放大系统与纵向多腔放大系统的耗能效果,提出了阻尼力及耗能理论计算式。取SADW为代表与普通黏滞阻尼墙(VDW)进行试验对比研究,分析在不同试验工况下SADW的滞回耗能能力。结果表明:SADW的滞回曲线较VDW更加饱满,耗能效果更为显著;将阻尼力-位移试验结果与理论曲线进行了对比,两者基本一致,阻尼力相差6.35%,理论滞回模型能较好模拟试验结果。同时,建立了30层混凝土框架核心筒结构进行地震时程响应分析,对比VDW和3种高效黏滞阻尼墙对该结构的减震效率,4种减震方案的结构附加阻尼比分别为0.71%、3.38%、6.22%、735%,附加阻尼比放大倍数分别为4.5、7.8、9.0,进一步验证了所提出的3种高效耗能阻尼墙具有良好的减震效果。  相似文献   

5.
设计制作了一种由圆柱螺旋弹簧与筒式黏滞阻尼器组合而成的弹簧-阻尼减振支座用于竖向减振,对其进行了频率相关性、位移幅值相关性以及反复加载相关性试验,测得了不同工况下的阻尼耗能、等效刚度、等效黏滞系数和损耗因子,研究了轴承力学性能对位移幅值和加载频率的影响.采用Kelvin模型对弹簧-阻尼减振支座的迟滞回线进行了计算和拟合...  相似文献   

6.
对一座形状不规则的、纵向刚度递减的框架-剪力墙结构采用黏滞阻尼墙和软钢阻尼墙两种减震方案进行减震效果对比分析。对未减震结构、设置黏滞阻尼墙减震结构和软钢阻尼墙减震结构进行7条地震波激励下的动力响应对比分析,结果表明,两种减震方案均能有效降低结构位移响应,位移减震效果两者均达到40%,楼层层间剪力结果表明设置黏滞阻尼墙减震效果达到35.68%,而软钢阻尼墙的层间剪力与未减震结构结果一致。以上结果说明框架-剪力墙结构尽管楼层位移较小,但黏滞阻尼墙由速度耗能给结构附加较多阻尼而减小地震力。软钢阻尼墙为位移型,由于楼层层间位移较小无法提供较大的耗能能力从而未能达到较好减震效果。  相似文献   

7.
以3层设置黏滞阻尼墙的钢框架结构为研究对象,对其进行3条地震波在不同水准下的振动台试验。通过对设置与不设置黏滞阻尼墙的两种结构动力特性和动力响应对比,分析了黏滞阻尼墙的减震效果和耗能特征及其变化规律。研究结果表明,黏滞阻尼墙是一种同时提供附加刚度和附加阻尼的被动消能减震装置,其在提供附加阻尼和附加刚度的同时可以对结构位移起到非常显著的控制作用,并且随着输入地震波峰值加速度的增大,该附加刚度逐渐减小,而附加阻尼则逐渐增大。此外,有限元分析结果与振动台试验结果的吻合度随响应对象和激励工况的不同而变化,说明了传统Maxwell模型用于模拟黏滞阻尼墙在动态力学特性方面的局限性。  相似文献   

8.
黏滞阻尼墙是一种新型的建筑消能减震装置,其应用前景十分广阔。本文借鉴国内外黏滞阻尼墙技术的研究、应用成果,结合工程实例,在传统设计与黏滞阻尼墙消能减震设计相比较的基础上,建立有限元模型模拟结构动力特性、动力响应,应用有限元软件进行迭代计算求解附加阻尼比,对层间位移角和层剪力的计算结果进行分析,最后对黏滞阻尼墙的选型、布置和连接构造进行了方案设计。分析结果表明:本设计方案,各项数值均满足规范要求并达到了预期的减震效果,还可为该类框架结构建筑的减震设计提供参考和借鉴。  相似文献   

9.
对非线性黏滞阻尼在调频质量阻尼器(TMD)中的应用进行了研究。基于慢变参数法推导简谐激励下采用非线性黏滞阻尼调频质量阻尼器减振结构位移的稳态响应解析解,进而研究其优化参数求解公式。以主结构位移动力放大系数为目标,对线性和非线性黏滞阻尼TMD的减振效果进行了对比分析,结果表明:非线性黏滞阻尼TMD的减振效果要优于线性的,其最优阻尼比受到激励幅值的影响。  相似文献   

10.
为了研究黏滞阻尼器凸轮式响应放大装置的减震控制,基于对其工作机理和阻尼力计算公式的已有研究,建立了安装黏滞阻尼器凸轮式响应放大装置的单自由度体系运动方程和能量方程,对安装黏滞阻尼器的单自由度体系和安装黏滞阻尼器凸轮式响应放大单自由度体系进行了地震反应分析对比,包括:对具有相同阻尼系数的黏滞阻尼器,进行了多遇地震作用下的控制效果分析和能量分析;对El Centro波作用下具有相同位移控制效果的不同阻尼系数的黏滞阻尼器,进行了罕遇地震作用下的控制效果分析和能量分析.结果表明,该装置在不同强度地震作用下对位移、速度、阻尼力等响应具有明显的放大作用,安装阻尼系数较小的阻尼器可达到直接安装阻尼系数较大阻尼器相同的减震和耗能效果,且具有在不同强度地震作用下位移不失效的优点.  相似文献   

11.
为了研究黏滞阻尼器凸轮式响应放大装置的减震控制,基于对其工作机理和阻尼力计算公式的已有研究,建立了安装黏滞阻尼器凸轮式响应放大装置的单自由度体系运动方程和能量方程,对安装黏滞阻尼器的单自由度体系和安装黏滞阻尼器凸轮式响应放大单自由度体系进行了地震反应分析对比,包括:对具有相同阻尼系数的黏滞阻尼器,进行了多遇地震作用下的控制效果分析和能量分析;对El Centro波作用下具有相同位移控制效果的不同阻尼系数的黏滞阻尼器,进行了罕遇地震作用下的控制效果分析和能量分析.结果表明,该装置在不同强度地震作用下对位移、速度、阻尼力等响应具有明显的放大作用,安装阻尼系数较小的阻尼器可达到直接安装阻尼系数较大阻尼器相同的减震和耗能效果,且具有在不同强度地震作用下位移不失效的优点.  相似文献   

12.
设计并加工了3个结构参数相同、但采用三种不同黏滞液的间隙式黏滞阻尼器,并对该3个黏滞阻尼器进行不同加载频率下的低周往复试验和抗疲劳性能试验。根据试验结果,分析了黏滞阻尼器的滞回性能,得到了相应的等效耗能系数、阻尼系数及阻尼指数。研究结果表明,间隙式黏滞阻尼器滞回曲线饱满,在小位移阶段便可有效耗能;阻尼系数随着黏滞液运动黏度增加而增大,阻尼指数随黏度增加而减小。该3个黏滞阻尼器历经30次往复循环加载,阻尼力均未出现衰减,具有较好的抗疲劳性能; Maxwell模型与该黏滞阻尼器的试验结果吻合良好。  相似文献   

13.
为提高黏滞阻尼伸臂桁架在地震作用下的耗能效率,设计了一种带位移放大装置的黏滞阻尼伸臂桁架。对分别设置传统型和位移放大型黏滞阻尼伸臂桁架的超高层结构进行有限元分析,对比了结构的地震响应及阻尼器的工作状态。通过动力荷载试验,考察两种黏滞阻尼伸臂桁架的滞回性能,对比阻尼器的位移及耗能,研究位移放大系数的变化规律,分析伸臂桁架刚度对黏滞阻尼伸臂桁架工作效率的影响。结果表明:相比传统型黏滞阻尼伸臂桁架,采用位移放大型黏滞阻尼伸臂桁架可将阻尼器的耗能效率提高至原来的1.5~1.8倍,使结构获得更好的减震效果;位移放大型黏滞阻尼伸臂桁架滞回曲线光滑、对称、饱满,具有良好的工作性能,且能有效放大阻尼器的工作位移并增大耗能;提出了黏滞阻尼伸臂桁架的位移放大系数的计算式,计算值与试验值吻合较好;为保证黏滞阻尼伸臂桁架的工作效率,建议伸臂桁架的刚度比取值不小于9。  相似文献   

14.
首先介绍了两类新型钢板阻尼墙技术(铅-黏滞复合阻尼墙和无屈曲钢板阻尼墙)。铅-黏滞复合阻尼墙由黏滞阻尼墙和铅阻尼器复合而成,主要用于解决高层钢结构的风振问题,其中黏滞阻尼墙用于提高舒适度性能,铅阻尼器用于减小风荷载下的层间位移角。无屈曲钢板阻尼墙则主要用于解决抗震问题,小震下其主要处于弹性状态,为结构提供抗侧刚度,中大震下则进入屈服状态消耗能量,使结构层间位移角满足规范要求。然后,基于上述两类阻尼墙技术,提出了适用于高层钢结构住宅的复合减震(振)设计方法。最后,通过在一幢高层钢结构住宅中采用上述两类新型阻尼墙技术,通过复合减震(振)设计,验证了两类阻尼墙技术对于减小高层钢结构风振和地震响应的有效性。  相似文献   

15.
为研究大跨半漂浮体系中承式钢管混凝土拱桥黏滞阻尼器参数选取与减震效果,以某计算跨径320 m中承式钢管混凝土拱桥为工程背景,采用MIDAS/Civil软件建立有限元模型,在动力特性分析的基础上提出黏滞阻尼器减震方案,并基于非线性动力时程分析方法研究了黏滞阻尼器的参数选取与减震效果。结果表明:半漂浮体系中承式钢管混凝土拱桥的纵飘振型出现较早,振型参与质量所占比重大,黏滞阻尼器参数选取主要应考虑梁端纵桥向容许位移和阻尼器连接构件所能承受的阻尼力; 对相同的阻尼指数,主梁梁端最大纵桥向位移响应随着阻尼系数的增大呈非线性减小,阻尼器轴力随着阻尼系数的增大几乎呈线性增大; 阻尼指数在0.2~0.4之间变化时,阻尼指数越大,同时满足梁端位移与阻尼力要求的阻尼系数可选范围越大; 设置黏滞阻尼器后,梁端纵桥向位移响应显著减小,拱顶纵桥向位移有所增加,除拱顶处拱肋轴力略有减小外,其余各处轴力、剪力与弯矩均有所增加,但内力响应绝对值不大; 研究成果可为同类桥梁减震设计提供参考。  相似文献   

16.
黏滞阻尼墙是一种效率高的新型建筑结构消能减振部件,对于地震响应和风振动响应均有较好的减振效果,其为结构提供附加阻尼比可降低结构构件内力,从而为结构的构件设计提供了优化空间。提出一种基于黏滞阻尼墙的高层建筑结构集成优化设计方法,依据高层建筑结构构件的抗震性能目标及构件尺寸控制条件,加入黏滞阻尼墙对结构构件进行优化。以某300 m带环带桁架的框架核心筒超高层建筑为例,优化布置黏滞阻尼墙并且进行结构构件优化设计。结果表明,黏滞阻尼墙对高层建筑结构集成的优化可为结构主体带来经济性。  相似文献   

17.
隧道衬砌–土层接触面的动力特性十分复杂,且受诸多因素影响,而地铁振动的传播又具有空间性,其在接触面处必然会发生较大变化,针对这一问题,提出一种黏弹性接触面模型,模拟隧道衬砌与土层的动力相互作用。利用柱面P波的传播规律推导了黏弹性接触面模型的无量纲弹簧系数和阻尼系数的解析表达式,并给出了其低频和高频极限。结果表明:与连续性接触面模型相比,黏弹性接触面模型能够有效地模拟衬砌–土层接触面处波动能量的损失;随着衬砌–土层剪切模量比的增加,土层动力响应幅值逐渐增大;衬砌–土层密度比对土层应力幅值影响较小,基频附近对应的径向位移幅值随着密度比的增加而增大;土层泊松比对无量纲频率w_11和w_13时的径向位移幅值影响较小,基频附近对应的径向位移幅值随着土层泊松比的增加逐渐减小。  相似文献   

18.
为解决高烈度地震区框架结构抗侧刚度小、冗余度较低的问题,提出对框架结构增设黏滞阻尼墙与防屈曲支撑(BRB)的方法来提高其抗震性能。阐述了黏滞阻尼墙和BRB的工作机理,并结合工程实例分别对框架结构进行四种工况下(纯框架结构、带黏滞阻尼墙的框架结构、带BRB的框架结构、带黏滞阻尼墙和BRB的框架结构)的小震、中震和大震抗震性能研究。结果表明,在小震和中震作用下黏滞阻尼墙和BRB既能提高框架结构的抗侧刚度,又能更好地耗散能量,框架结构抗震性能较好,两者能够有机地结合起来;在大震作用下,黏滞阻尼墙和BRB滞回曲线饱满,耗能效果明显,是一种值得推广的方式。  相似文献   

19.
黏弹性橡胶阻尼器是一种兼具黏滞性和弹性两种特性的阻尼器,耗能能力良好,可以同时为结构提供附加刚度和附加阻尼。通过对高阻尼黏弹性橡胶连梁阻尼器进行循环加载试验,研究了其基本力学性能,分析了该阻尼器在低周疲劳加载和高周疲劳加载下的基本力学特性。研究结果表明:高阻尼黏弹性橡胶连梁阻尼器的耗能能力优良;该阻尼器的储存刚度、损失刚度、损失系数受变形幅值的影响较大,受加载频率影响较小;等效阻尼系数与频率呈现反比例函数关系;该阻尼器的基本力学性能在低周和高周疲劳加载下呈现出较明显的衰减。  相似文献   

20.
针对沿海地区某高位大跨度连体结构在风荷载和水平地震作用下固定铰连接内力大和受力复杂的问题,提出了摩擦摆支座与切换阻尼器的组合隔震减振措施,试验研究了由黏滞阻尼器和液压阀组成切换阻尼器的阻尼力特性,开展了高位大跨度结构的隔震减振多性能目标设计方法研究。结果表明:按照调谐减振系统的最优频率确定的高位大跨度结构隔震频率使得塔楼的位移响应最小;切换阻尼器实现了速度相关型和位移相关型两种阻尼力;与摩擦摆支座的摩擦力相比,切换阻尼器的位移相关型阻尼力不受风荷载影响,滑动位移的控制效果更好;切换阻尼器的速度相关型阻尼力与摩擦摆支座的摩擦力共同实现了高位大跨度连体结构的抗震性能目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号