首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The adsorption equilibrium and kinetics studies of cadmium (Cd) ions from aqueous solutions on manganese nodule residue were carried out by considering the influence of various parameters, such as contact time, solution pH and initial metal concentration in solution, temperature and adsorbent quantity. The adsorption of Cd increased with an increase in the concentrations of this metal in solution. Presence of manganese and iron content in manganese nodule residue (MNR) played a significant role in Cd(II) ions removal. The linear forms of the Langmuir and Freundlich equations were utilized for experiments with metal concentrations of 200 mg/L for Cd(II) as functions of solution pH (2.0-6.0). First-order rate equation and pseudo second-order rate equations were applied to study adsorption kinetics. Mass transfer study was also done to know the reaction rate. Thermodynamic parameters, such as standard Gibb's free energy (deltaG(o)), standard enthalpy (deltaH(o)) and standard entropy (deltaS(o)), were also evaluated by Van't Hoff equation. Thus, adsorption of Cd on this adsorbent was found to be spontaneous and exothermic thermodynamically. The adsorption capacity for Cd was found to be 19.8 mg/g of MNR. Under the optimised conditions, cadmium level was brought down from 100 mg/L to Cd less than detection limits and from 200 to 2 mg/L. Thus, the wastewater after cadmium removal could be safely disposed off on to land or sewage. Finally, the metal loaded adsorbent was subjected to desorption using different mineral acids and leaching by using toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP) tests for its further treatment or its safe disposal.  相似文献   

2.
This paper reports the feasibility of using various agricultural residues viz. sugarcane bagasse (SCB), maize corncob (MCC) and Jatropha oil cake (JOC) for the removal of Cd(II) from aqueous solution under different experimental conditions. Effect of various process parameters, viz., initial metal ion concentration, pH, and adsorbent dose has been studied for the removal of cadmium. Batch experiments were carried out at various pH (2-7), adsorbent dose (250-2000 mg), Cd(II) concentration (5-500 mg l(-1)) for a contact time of 60 min. The maximum cadmium removal capacity was shown by JOC (99.5%). The applicability of Langmuir and Freundlich isotherm suggests the formation of monolayer of Cd(II) ions onto the outer surface of the adsorbents. Maximum metal removal was observed at pH 6.0 with a contact time of 60 min at stirring speed of 250 rpm with an adsorbent dose of 20 g l(-1) of the test solution. The maximum adsorption of cadmium (II) metal ions was observed at pH 6 for all the adsorbents viz; 99.5%, 99% and 85% for JOC, MCC, and SCB, respectively. Order of Cd(II) removal by various biosorbents was JOC>MCC>SCB. JOC may be an alternative biosorbent for the removal of Cd(II) ions from the aqueous solution. FT-IR spectra of the adsorbents (before use and after exhaustion) were recorded to explore number and position of the functional groups available for the binding of Cd(II) ions on to studied adsorbents. These results can be helpful in designing a batch mode system for the removal of cadmium from dilute wastewaters.  相似文献   

3.
Carbonate hydroxylapatite (CHAP) synthesized by using eggshell waste as raw material has been investigated as metal adsorption for Cd(II) and Cu(II) from aqueous solutions. The effect of various parameters on adsorption process such as contact time, solution pH, amount of CHAP and initial concentration of metal ions was studied at room temperature to optimize the conditions for maximum adsorption. The results showed that the removal efficiency of Cd(II) and Cu(II) by CHAP could reach 94 and 93.17%, respectively, when the initial Cd(II) concentration 80 mg/L and Cu(II) 60 mg/L and the liquid/solid ratio was 2.5 g/L. The equilibrium sorption data for single metal systems at room temperature could be described by the Langmuir and Freundlich isotherm models. The highest value of Langmuir maximum uptake, (b), was found for cadmium (111.1mg/g) and copper (142.86 mg/g). Similar Freundlich empirical constants, K, were obtained for cadmium (2.224) and copper (7.925). Ion exchange and surface adsorption might be involved in the adsorption process of cadmium and copper. Desorption experiments showed that CaCl2, NaCl, acetic acid and ultrasonic were not efficient enough to desorb substantial amount of metal ions from the CHAP. The results obtained show that CHAP has a high affinity to cadmium and copper.  相似文献   

4.
The biosorption of cadmium(II) ions on Oedogonium sp. is studied in a batch system with respect to initial pH, algal dose, contact time and the temperature. The algal biomass exhibited the highest cadmium(II) uptake capacity at 25 degrees C, at the initial pH value of 5.0 in 55 min and at the initial cadmium(II) ion concentration of 200 mg L(-1). Biosorption capacity decreased from 88.9 to 80.4 mg g(-1) with an increase in temperature from 25 to 45 degrees C at this initial cadmium(II) concentration. Uptake kinetics follows the pseudo-second-order model and equilibrium is well described by Langmuir isotherm. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change, enthalpy change and entropy change. FTIR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which are responsible for biosorption of metal ions. Acid pretreatments did not substantially increase metal sorption capacity but alkali like NaOH pretreatment slightly enhanced the metal removal ability of the biomass. During repeated sorption/desorption cycles at the end of fifth cycle, Cd(II) sorption decreased by 18%, with 15-20% loss of biomass. Nevertheless, Oedogonium sp. appears to be a good sorbent for removing metal Cd(II) from aqueous phase.  相似文献   

5.
The efficiency of parthenium weed as an adsorbent for removing Cd(II) from water has been studied. Parthenium is found to exhibit substantial adsorption capacity over a wide range of initial Cd(II) ions concentration. Effect of time, temperature, pH and concentration on the adsorption of Cd(II) was investigated by batch process. Pseudo-first-order and Pseudo-second-order models were evaluated. The kinetics data for the adsorption process obeyed second-order rate equation. The equilibrium data could be described well by the Langmuir and Freundlich isotherms. Thermodynamic parameters such as DeltaH degrees , DeltaS degrees and DeltaG degrees were calculated. The adsorption process was found to be endothermic and spontaneous. The maximum adsorption of Cd(II) ions (99.7%) in the pH range 3-4 indicated that material could be effectively utilized for the removal of Cd(II) ions from wastewater. The desorption studies showed 82% recovery of Cd(II) when 0.1 M HCl solution was used as effluent.  相似文献   

6.
The adsorption of Cd(II) ions on sulphuric acid-treated wheat bran   总被引:2,自引:0,他引:2  
The adsorption of Cd(II) ions which is one of the most important toxic metals by using sulphuric acid-treated wheat bran (STWB) was investigated. The effects of solution pH and temperature, contact time and initial Cd(II) concentration on the adsorption yield were studied. The equilibrium time for the adsorption process was determined as 4 h. The adsorbent used in this study gave the highest adsorption capacity at around pH 5.4. At this pH, adsorption capacity for an initial Cd(II) ions concentration of 100 mg/L was found to be 43.1 mg/g at 25 degrees C for contact time of 4 h. The equilibrium data were analysed using Langmuir and Freundlich isotherm models to calculate isotherm constants. The maximum adsorption capacity (qmax) which is a Langmuir constant decreased from 101.0 to 62.5 mg/g with increasing temperature from 25 to 70 degrees C. Langmuir isotherm data were evaluated to determine the thermodynamic parameters for the adsorption process. The enthalpy change (deltaH(o)) for the process was found to be exothermic. The free energy change (deltaG(o)) showed that the process was feasible. The kinetic results indicated that the adsorption process of Cd(II) ions by STWB followed first-order rate expression and adsorption rate constant was calculated as 0.0081 l/min at 25 degrees C. It was observed that the desorption yield of Cd(II) was highly pH dependent.  相似文献   

7.
Pb(II) and Cd(II) removal from aqueous solutions by olive cake   总被引:1,自引:0,他引:1  
The removal of heavy metals from wastewater using olive cake as an adsorbent was investigated. The effect of the contact time, pH, temperature, and concentration of adsorbate on adsorption performance of olive cake for Pb(II) and Cd(II) ions were examined by batch method. Adsorption of Pb(II) and Cd(II) in aqueous solution onto olive cake was studied in single component. After establishing the optimum conditions, elution of these ions from the adsorbent surface was also examined. The optimum sorption conditions were determined for two elements. Maximum desorption of the Pb(II) and Cd(II) ions were found to be 95.92 and 53.97% by 0.5M HNO(3) and 0.2M HCl, respectively. The morphological analysis of the olive cake was performed by the scanning electron microscopy (SEM).  相似文献   

8.
Chromite mine overburden containing iron as oxide/hydroxide, a waste material generated in chromite mines was used as sorbent for cadmium. The iron content of material was 43.75% with a specific surface area of 50.8m(2)/g. Batch experiments were conducted to study the sorption behavior of Cd(II) on this material. The variable experimental parameters were: time, pH, temperature, Cd(II) and sample concentration. The point of zero charge (PZC) of the overburden sample was experimentally determined as 6.48 which shifted to a pH of 7.8 when the sample was equilibrated with 100 mg/L Cd(II) solution. Maximum loading capacity of the overburden sample was found to be approximately 19 mg Cd/g of material. It was observed that within 30 min the sorption attains equilibrium. Hence, the sorption data generated at 30 min with various initial Cd(II) concentrations and temperatures were taken to evaluate the thermodynamic parameters, i.e., DeltaG degrees , DeltaH degrees and DeltaS degrees . The DeltaG degrees values reflect the feasibility of the metal removal from aqueous solution. The negative values of DeltaH degrees confirmed the exothermic sorption of cadmium and the positive DeltaS degrees values suggested the increased randomness at the solid-solution interface. The sorption data fitted well to both the Langmuir and Freundlich isotherm models indicating a monolayer sorption. The value of Freundlich parameter 'n' (n is indicative of sorption intensity) lying between 1.46 and 1.59 shows that the surface of the sorbent is heterogeneous in nature.  相似文献   

9.
A fixed bed of sodium carbonate treated rice husk was used for the removal of Cd(II) from water environment. The material as adopted was found to be an efficient media for the removal of Cd(II) in continuous mode using fixed bed column. The column having a diameter of 2 cm, with different bed depths such as 10, 20 and 30 cm could treat 2.96, 5.70 and 8.55 l of Cd(II) bearing wastewater with Cd(II) concentration 10 mg/l and flow rate 9.5 ml/min. Different column design parameters like depth of exchange zone, adsorption rate, adsorption capacity, etc. was calculated. Effect of flow rate and initial concentration was studied. Theoretical breakthrough curve was drawn from the batch isotherm data and it was compared with experimental breakthrough curve. An amount of 0.01 mol/l HCl solution was used for desorption of adsorption column. Column regeneration and reuse studies were conducted for two cycles of adsorption-desorption.  相似文献   

10.
The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C(0)), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity (kappa) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5mA/cm(2)) and various interelectrode distance (1, 2 and 3cm). For solutions with 300mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55mA/cm(2), initial pH was 7.6, conductivity was 2.1mS/cm, duration of treatment was 10min and interelectrode distance was 1cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD(5)) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15min), and the removal rate reaches 95%.  相似文献   

11.
为了提高褐煤半焦对重金属离子的吸附性能,将褐煤用3.0 mol/L H_3PO_4进行活化,将改性剂Ce(SO_4)_2·4H_2O与活化褐煤混合,通过炭化制备出改性褐煤半焦,对改性褐煤半焦的制备条件进行了优化,并通过扫描电镜(SEM)和能谱仪(EDS)对改性褐煤半焦进行了表征。在25℃和静态条件下,研究了改性褐煤半焦对模拟废水中Cd(Ⅱ)的吸附效果,探讨了改性褐煤半焦对废水中Cd(Ⅱ)的吸附条件。结果表明:改性褐煤半焦对模拟废水中Cd(Ⅱ)具有很好的吸附性能,Cd(Ⅱ)的去除率达99.8%。改性褐煤半焦对模拟废水中Cd(Ⅱ)吸附的适宜条件为吸附温度为25℃,Ce(SO_4)_2·4H_2O用量为褐煤质量的5.0%,废水pH值为3.0,Cd(Ⅱ)的起始浓度为40.00 mg/L,吸附时间为2.0 h,Cd(Ⅱ)与改性褐煤半焦的质量比为1∶50。按照改性褐煤半焦对模拟废水中Cd(Ⅱ)吸附的适宜条件,含Cd(Ⅱ)12.90 mg/L的电镀废水经改性褐煤半焦处理后,Cd(Ⅱ)去除率为99.3%,Cd(Ⅱ)的浓度降为0.09 mg/L,可达标排放。改性褐煤半焦可再生利用。  相似文献   

12.
Chitosan was chemically modified by introducing xanthate group onto its backbone using carbondisulfide under alkaline conditions. The chemically modified chitosan flakes (CMC) was used as an adsorbent for the removal of cadmium ions from electroplating waste effluent under laboratory conditions. CMC was found to be far more efficient than the conventionally used adsorbent activated carbon. The maximum uptake of cadmium by CMC in batch studies was found to be 357.14 mg/g at an optimum pH of 8.0 whereas for plain chitosan flakes it was 85.47 mg/g. Since electroplating wastewater contains cyanide in appreciable concentrations, interference of cyanide ions in cadmium adsorption was found to be very significant. This problem could be easily overcome by using higher doses of CMC, however, activated carbon was not found to be effective even at higher doses. Due to the high formation constant of cadmium with xanthate and adsorption was carried out at pH 8, cations like Pb(II), Cu(II), Ni(II) and Zn(II) did not interfere in the adsorption. Dynamics of the sorption process were studied and the values of rate constant of adsorption were calculated. Desorption of the bound cadmium from CMC was accomplished with 0.01 N H(2)SO(4). The data from regeneration efficiencies for 10 cycles evidenced the reusability of CMC in the treatment of cadmium-laden wastewater.  相似文献   

13.
In this study, pure TiO2-nanoparticles and TiO2/sewage sludge (TS) as biomass material were synthesised via a sol–gel method. The adsorption potential of nanosized TiO2 and TS for removal of Cd(II) was investigated in a batch system. The prepared adsorbents were characterised using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The XRD analysis showed that pure TiO2 is in amorphous phase before calcination and in anatase phase at annealing temperature of 400 °C. TiO2/sewage sludge that calcined at 400 °C (TS400) was found to be the best adsorbent for cadmium removal from aqueous solution. Kinetic and isotherm studies were carried out by considering the parameters, pH, initial concentration and contact time. The optimum pH value for Cd(II) adsorption onto TS400 was found to be 6. Langmuir isotherm showed better fit than Freundlich isotherm and the maximum adsorption capacity was found to be 29.28 mg/g which is higher than that of many other adsorbents reported in literature. The sorption kinetic data were well fitted with a pseudo-second-order model. These results demonstrated that TS400 was readily prepared and is the promising and effective solid material for the removal of Cd(II) from aqueous solutions.  相似文献   

14.
Adsorption behavior and mechanism of Cd(II) on loess soil from China   总被引:2,自引:0,他引:2  
Cadmium is a toxic heavy metal that has caused serious public health problems. It is necessary to find a cost effective method to deal with wastewater containing Cd(II). Loess soils in China have proven to be a potential adsorbent for Cd(II) removal from wastewater. The adsorption capacity of loess towards Cd(II) has been determined to be about 9.37 mg g−1. Slurry concentration, initial solution pH, reaction time and temperature have also been found to significantly influence the efficiency of Cd(II) removal. The adsorption isotherms and kinetics of loess soil from China can be best-fit with the Langmuir model and pseudo-second order kinetics model, respectively. The thermodynamic analysis revealed that the adsorption process was spontaneous, endothermic and the system disorder increased with duration. The natural organic matter in loess soil is mainly responsible for Cd(II) removal at pH < 4.2, while clay minerals contribute to a further gradual adsorption process. Chemical precipitation dominates the adsorption stage at pH > 8.97. Further studies using X-ray diffraction, Fourier transform infrared spectra of Cd(II) laden loess soil and Cd(II) species distribution have confirmed the adsorption mechanism.  相似文献   

15.
In this research, adsorption technique was applied for strontium and barium removal from aqueous solution using dolomite powder. The process has been investigated as a function of pH, contact time, temperature and adsorbate concentration. The experimental data was analyzed using equilibrium isotherm, kinetic and thermodynamic models. The isotherm data was well described by Langmuir isotherm model. The maximum adsorption capacity was found to be 1.172 and 3.958 mg/g for Sr(II) and Ba(II) from the Langmuir isotherm model at 293 K, respectively. The kinetic data was tested using first and pseudo-second order models. The results indicated that adsorption fitted well with the pseudo-second order kinetic model. The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) were also determined using the equilibrium constant value obtained at different temperatures. The results showed that the adsorption for both ions was feasible and exothermic.  相似文献   

16.
The ability of fruit peel of orange to remove Zn, Ni, Cu, Pb and Cr from aqueous solution by adsorption was studied. The adsorption was in the order of Ni(II)>Cu(II)>Pb(II)>Zn(II)>Cr(II). The extent of removal of Ni(II) was found to be dependent on sorbent dose, initial concentration, pH and temperature. The adsorption follows first-order kinetics. The process is endothermic showing monolayer adsorption of Ni(II), with a maximum adsorption of 96% at 50 degrees C for an initial concentration of 50 mg l(-1) at pH 6. Thermodynamic parameters were also evaluated. Desorption was possible with 0.05 M HCl and was found to be 95.83% in column and 76% in batch process, respectively. The spent adsorbent was regenerated and recycled thrice. The removal and recovery was also done in wastewater and was found to be 89% and 93.33%, respectively.  相似文献   

17.
Removal of cadmium from aqueous solutions by palygorskite   总被引:2,自引:0,他引:2  
The sorption characteristics of palygorskite with respect to cadmium were studied with the aim of assessing its use in water purification systems. Using a batch method the influence of time (0.5-48 h), initial Cd concentration (5-150 mg/l or 0.044-1.34 mmol/l), ionic strength ([Ca(II)]: 0-0.1 mol/l), pH (3-7) and mineral dose (1-20 g/l) on Cd removal was evaluated. The sorption of Cd on palygorskite appeared as a fast process, with equilibrium being attained within the first half an hour of interaction. This process could be described by the Langmuir model and gave a maximum Cd sorption of 4.54 mg/g. This sorption capacity value was greatly affected by both pH and ionic strength. Thus, Cd sorption decreased as initial pH lessened, especially at proton concentrations similar to those of Cd, at which competition for variable charge sites (silanol groups on palygorskite surface) appeared to be important. High competing electrolyte concentrations also decreased significantly (close to 60%) the amount of sorbed Cd, suggesting a great contribution of replacement of exchange cations in this metal removal by palygorskite. The increase of mineral dose provoked a Cd removal raise; removal values in the range 85-45% were attained for Cd initial concentrations of 10-150 mg/l (0.089-1.34 mmol/l) when a palygorskite dose of 20 g/l was employed. Column studies were also performed in order to estimate the potential of palygorskite to be used in continuous flow purification systems, showing the effectiveness of this mineral to purify down to the legal limit of waste moderate volumes of Cd-containing solutions with a similar concentration (50mg/l or 0.445 mmol/l) to those mostly found in the upper range of concentrations usually present in industrial wastewaters.  相似文献   

18.
Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) [poly(EGDMA-VIM)] hydrogel (average diameter 150-200 microm) was prepared by copolymerizing ethylene glycol dimethacrylate (EGDMA) with n-vinyl imidazole (VIM). The copolymer hydrogel bead composition was characterized by elemental analysis and found to contain 5 EGDMA monomer units each VIM monomer unit. Poly(EGDMA-VIM) beads had a specific surface area of 59.8 m2/g. Poly(EGDMA-VIM) beads were characterized by swelling studies and scanning electron microscopy (SEM). These poly(EGDMA-VIM) beads with a swelling ratio of 78% were used for the heavy metal removal studies. Chelation capacity of the beads for the selected metal ions, i.e., Cd(II), Hg(II) and Pb(II) were investigated in aqueous media containing different amounts of these ions (10-750 mg/l) and at different pH values (3.0-7.0). Chelation rate was very fast. The maximum chelation capacities of the poly(EGDMA-VIM) beads were 69.4 mg/g for Cd(II), 114.8 mg/g for Pb(II) and 163.5 mg/g for Hg(II). The affinity order on molar basis was observed as follows: Hg(II) > Cd(II) > Pb(II). Chelation behavior of heavy metal ions could be modelled using both the Langmuir and Freundlich isotherms. pH significantly affected the chelation capacity of VIM incorporated beads. Chelation of heavy metal ions from synthetic wastewater was also studied. The chelation capacities are 45.6 mg/g for Cd(II), 74.2 mg/g for Hg(II) and 92.5 mg/g for Pb(II) at 0.5 mmol/l initial metal concentration. Regeneration of the chelating-beads was easily performed with 0.1 M HNO3. These features make poly(EGDMA-VIM) beads potential candidate adsorbent for heavy metal removal.  相似文献   

19.
The adsorption of Zn(II) from both synthetic solution and kaolin industry wastewater by cattle manure vermicompost was studied. The adsorption process was dependent on the various operating variables, viz., solution pH, particle size of the vermicompost, mass of vermicompost/volume of the Zn(II) solution ratio, contact time and temperature. The optimum conditions for Zn adsorption were pH 6.0, particle size of < or = 250 microm, 1 g per 10 mL adsorbent dose, contact time of 4h and temperature of 25 degrees C. Langmuir and Freundlich adsorption isotherms fit well in the experimental data and their constants were evaluated, with R(2) values from 0.95 to 0.99. In synthetic solution, the maximum adsorption capacity of the vermicompost for Zn(2+) ions was 20.48 mg g(-1) at 25 degrees C when the vermicompost dose was 1 g 10 mL(-1) and the initial adjusted pH was 2. The batch adsorption studies of Zn(II) on vermicompost using kaolin wastewater have shown the maximum adsorption capacity was 2.49 mg g(-1) at pH 2 (natural pH of the wastewater). The small values of the constant related to the energy of adsorption (from 0.07 to 0.163 L mg(-1)) indicated that Zn(2+) ions were binded strongly to vermicompost. The values of the separation factor, R(L), which has been used to predict affinity between adsorbate and adsorbent were between 0 and 1, indicating that sorption was very favorable for Zn(II) in synthetic solution and kaolin wastewater. The thermodynamic parameter, the Gibbs free energy, was calculated for each system and the negative values obtained confirm that the adsorption processes are spontaneous. The DeltaG degrees values were -19.656 kJ mol(-1) and -16.849 kJ mol(-1) for Zn(II) adsorption on vermicompost in synthetic solution at pH 6 and 2, respectively, and -13.275 kJ mol(-1) in kaolin wastewater at pH 2.  相似文献   

20.
The purpose of the study described in this paper was to compare the removal of Cr(VI) and Cd(II) from an aqueous solution using two different Turkish fly ashes; Afsin-Elbistan and Seyitomer as adsorbents. The influence of four parameters (contact time, solution pH, initial metal concentration in solution and ash quality) on the removal at 20+/-2 degrees C was studied. Fly ashes were found to have a higher adsorption capacity for the adsorption of Cd(II) as compared to Cr(VI) and both Cr(VI) and Cd(II) required an equilibrium time of 2h. The adsorption of Cr(VI) was higher at pH 4.0 for Afsin-Elbistan fly ash (25.46%) and pH 3.0 for Seyitomer fly ash (30.91%) while Cd(II) was adsorbed to a greater extent (98.43% for Afsin-Elbistan fly ash and 65.24% for Seyitomer fly ash) at pH 7.0. The adsorption of Cd(II) increased with an increase in the concentrations of these metals in solution while Cr(VI) adsorption decreased by both fly ashes. The lime (crystalline CaO) content in fly ash seemed to be a significant factor in influencing Cr(VI) and Cd(II) ions removal. The linear forms of the Langmuir and Freundlich equations were utilised for experiments with metal concentrations of 55+/-2mg/l for Cr(VI) and 6+/-0.2mg/l for Cd(II) as functions of solution pH (3.0-8.0). The adsorption of Cr(VI) on both fly ashes was not described by both the Langmuir and Freundlich isotherms while Cd(II) adsorption on both fly ashes satisfied only the Langmuir isotherm model. The adsorption capacities of both fly ashes were nearly three times less than that of activated carbon for the removal of Cr(VI) while Afsin-Elbistan fly ash with high-calcium content was as effective as activated carbon for the removal of Cd(II). Therefore, there are possibilities for use the adsorption of Cd(II) ions onto fly ash with high-calcium content in practical applications in Turkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号