首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
反硝化除磷菌可以在碳源不足的条件下,通过"一碳两用"的方式同时实现反硝化脱氮和吸磷过程,有研究表明,A2/O工艺中存在反硝化除磷现象.为此以啤酒废水为处理对象,研究了缺氧区与好氧区容积比对A2/O工艺反硝化除磷的影响.试验结果表明,在缺氧区与好氧区容积比分别为0.33、0.48、0.60的条件下,A2/O系统对总氮的平均去除率分别为68.04%、79.64%和85.70%,对总磷的平均去除率分别为85.38%、90.80%和96.84%,对COD的去除率均在90%以上.此外,如果继续增大缺氧区与好氧区容积比,应适当调整内循环比,否则会由于缺氧区硝酸盐浓度不够而发生二次释磷现象.  相似文献   

2.
介绍了一种新型的脱氯除磷工艺及其运行情况。该工艺是对传统A^2/O工艺的改进(可称为改良型A^2/O工艺),它采用了后置反硝化系统以及厌氧池碳源分流技术和回流污泥预缺氧反硝化技术,以提高系统的脱氯除磷效果。研究结果表明:在进水COD≥300mg/L,TN为40.3mg/L,TP为3.82mg/L时,对TN、TP及COD的去除率分别可迭70%、86%和88%;当COD〈300mg/L时,对TP的去除效果较差,但对TN和COD的去除率仍分别可达60%和85%;试验期间,污泥沉降性能良好。  相似文献   

3.
交替式缺氧/厌氧膜生物反应器的脱氮除磷效能   总被引:1,自引:0,他引:1  
开发出一种交替式缺氧/厌氧膜生物反应器(AAAM)的脱氮除磷工艺。该工艺由一个交替的缺氧/厌氧反应区扣一个连续曝气的好氧区组成,通过改变好氧区回流混合液的流向使缺氧和厌氧环境在两个单独的反应器(A和B)内交替形成,以实现同步缺氧反硝化、厌氧释磷及反硝化聚磷菌的部分吸磷过程。中空纤维微滤膜置于好氧区,该区采用连续曝气方式实现硝化、过量吸磷及对膜污染的控制。试验结果表明:AAAM工艺能够高效去除营养物,对COD、总氮、总磷的平均去除率分别为93%、67.4%和94.1%。  相似文献   

4.
为解决A2/O工艺处理低碳氮比值城市污水时存在的脱氮除磷效果差的问题,将中试规模A2/O工艺的缺氧区及好氧区80%的容积改为低氧区,而其厌氧区按缺氧区运行,该缺氧/低氧/好氧工艺称为ALO工艺.当水温为19 ~ 23℃、进水COD为148.4 mg/L、HRT为8h时,控制低氧区的DO为0.2~0.6 mg/L,在ALO工艺中实现了短程硝化反硝化.当进水C/N值为3.5左右时,ALO工艺对TN的去除率为73.8%,对TN和TP的去除率比A2/O工艺分别高出30%和20%以上,但其消耗的空气量仅为A2/O工艺的50%.ALO工艺的活性污泥存在轻微的非丝状菌膨胀.  相似文献   

5.
采用三段式分段进水A2/O工艺处理低C/N值生活污水,重点研究了第1段的厌氧/缺氧/好氧体积比对系统除磷及反硝化除磷的影响。试验采用3种运行工况,其厌氧/缺氧/好氧体积比分别为(1∶3∶4)、(2∶2∶4)和(3∶2∶3)。结果表明,在好氧区体积能够保证硝化顺利完成的情况下,适当地提高厌氧/缺氧区体积,可改善脱氮除磷性能。随厌氧区体积的增大,系统对TP的去除率由工况1的38.75%提高到工况3的80.39%,对TN的去除率由76.29%提高到82.33%,且工况3发生了一定程度的反硝化除磷现象。基于试验所采用的3种运行工况,第1段较为优化的厌氧/缺氧/好氧体积比为3∶2∶3。  相似文献   

6.
以实际生活污水为处理对象,就缺氧区与好氧区容积比对Carrousel 2000氧化沟同步脱氮除磷的影响进行了研究。在缺氧区与好氧区的容积比分别为0.35、0.49、0.64的条件下,Carrousel 2000氧化沟对氨氮的平均去除率分别为92.96%、94.93%和97.60%,对总磷的平均去除率分别为80.22%、86.55%和92.30%,对COD的去除率均在90%以上。此外,如果继续增大缺氧区与好氧区的容积比,应适当调整内循环比,否则缺氧区会因硝酸盐浓度不够而发生二次释磷现象。  相似文献   

7.
倒置A2/O工艺的短程生物脱氮中试   总被引:1,自引:0,他引:1  
在中试规模的倒置A^2/O工艺中,考察了通过控制溶解氧浓度实现短程硝化反硝化的效果。试验表明,在溶解氧为0.3~0.8mg/L的条件下,可以实现短程硝化反硝化,平均亚硝化率可达64.5%,对TN的平均去除率为66.8%,但易导致严重的污泥膨胀;在低氧(DO=0.3~0.8mg/L)与常氧(DO=1.6~2.5mg/L)模式交替运行的条件下,可以维持稳定的短程硝化反硝化.平均亚硝化率可达48.4%,对TN的平均去除率为64.3%,对TP的平均去除率可达38.5%。污泥的SVI控制在112mL/g左右。  相似文献   

8.
研究了膜-序批式工艺处理生活污水的特性,采用厌氧(A)-好氧(O)-缺氧(A) 膜出水的运行方式,1h搅拌进水进行磷的厌氧释放,0.5h好氧吸磷和硝化,0.5h缺氧搅拌进行脱氮和反硝化除磷,在总的水力停留时间为11小时的条件下,系统对氨氮、总氮、总磷的平均去除率分别达到了95.97%,89.18%和90%。周期试验发现,好氧吸磷和反硝化除磷对磷去除贡献率分别为72.90%和17.25%,系统有较好的反硝化除磷功能,同时系统还存在同步硝化反硝化作用,对TN的去除占总去除率的16.50%。  相似文献   

9.
西安市污水处理厂改良A~2/O工艺的运行效果分析   总被引:1,自引:0,他引:1  
介绍了西安市污水处理厂改良A^2/O工艺的特点及运行状况。采用对回流污泥预反硝化及分段进水的方法,减少了硝酸盐对聚磷菌(PAOs)碳源摄取释磷行为的影响,基本满足了反硝化和生物除磷(BPR)对碳源的需求。结果表明,该工艺对COD、NH4^+-N、总氮、总磷的去除率分别为91.91%、78.70%、64.20%和95.52%。  相似文献   

10.
在五箱一体化活性污泥工艺试验中发现,在从较高负荷转入较低负荷运行时出现反硝化除磷现象.为进一步研究该工艺的反硝化除磷能力,取反应器污泥加入一定量COD厌氧搅拌以释放磷,富磷污泥分别置于好氧和缺氧环境中,比较好氧吸磷和反硝化吸磷的差异,同时取按A2/O运行的氧化沟污泥进行对比试验.结果表明,五箱一体化工艺活性污泥具有较高的反硝化除磷能力,缺氧初期反硝化吸磷速度远远高于好氧吸磷速度,反硝化聚磷菌占全部聚磷菌的99.25%,高于按A2/O运行的氧化沟的88.2%.  相似文献   

11.
短好氧泥龄下A2/O和BAF联合工艺的脱氮除磷特性   总被引:2,自引:0,他引:2  
采用小试装置,研究了短好氧污泥龄下A2/O和BAF联合工艺处理低C/N和C/P污水时的脱氮除磷特性.结果表明,通过提高A2/O工艺段的厌氧区有机负荷和缺氧区硝酸盐负荷对反硝化聚磷菌(DPAOs)进行选择和强化后,其在聚磷菌(PAOs)中的比例维持在28%左右,工艺具有部分反硝化除磷能力,能够减少脱氮除磷过程中对碳源的总需求量.但在联合工艺中,好氧除磷仍是主要的除磷方式.在A2/O工艺段内,好氧污泥龄在满足好氧PAOs存活的同时,还必须满足抑制硝化细菌生长的要求,且为了保证工艺对磷的整体去除效果,混合液在好氧区的接触时间须大于30 min.此外,以保证缺氧区出水中含有1~4 mg/L的硝态氮为原则来控制BAF出水的回流量,可达到较好的脱氮除磷效果.该联合工艺结合了活性污泥工艺和生物膜工艺的优点,运行稳定,出水水质优良,不仅适合于新建污水处理厂,也特别适合于不能脱氮除磷污水处理厂的技术改造.  相似文献   

12.
硝酸盐浓度对反硝化聚磷菌诱导的影响   总被引:10,自引:0,他引:10  
通过控制缺氧段硝酸盐浓度,研究了反硝化聚磷菌的诱导方法及效果.批式试验表明,碳源浓度一定时,缺氧段硝酸盐消耗量与聚磷量呈线性关系,且与厌氧释磷量之比等于该线性关系式的斜率.在反硝化聚磷菌诱导过程中,按此比例调整缺氧段的硝酸盐浓度可很快达到良好的脱氮除磷效果,反硝化聚磷率>95%,反硝化脱氮率>96%.由同等条件下的缺氧与好氧最大聚磷速率可推知,诱导前反硝化聚磷菌占总聚磷菌的27.61%,诱导后则高达78.61%.  相似文献   

13.
SBR工艺对低碳量城市污水的反硝化除磷研究   总被引:2,自引:0,他引:2  
广州地区的城市污水含碳量低,碳、氮、磷浓度比例失调,采用传统工艺处理很难达到理想的脱氮除磷效果,为此采用SBR工艺对其进行处理,考察了该工艺的反硝化除磷效果。结果表明,在厌氧/缺氧/好氧的运行模式下,采用逐步增加缺氧段运行时间的方法可有效提高污泥的反硝化除磷性能;在试验进水水质条件下,反应器厌氧运行30min、缺氧运行3h、好氧运行1h可保证对磷的稳定高效去除,出水TP〈1mg/L;ORP值无法指示缺氧反硝化与吸磷过程,pH值可作为缺氧吸磷结束的指示参数,而ORP和pH值均可作为好氧吸磷结束的控制参数。  相似文献   

14.
反硝化除磷的生物化学代谢模型   总被引:3,自引:0,他引:3  
基于Delft科技大学和活性污泥法动力学模型(ASM2D)推出的反硝化除磷生物化学代谢模型,从生物除磷的计量学和动力学两方面介绍了反硝化除磷过程一系列复杂的生化反应机理。反硝化除磷与传统好氧除磷的生化反应机理非常相似,两种除磷模式的许多化学计量学和动力学方程可以通用;好氧除磷动力学所涉及的一部分参数同时也适用于反硝化除磷动力学;两者最大的区别就是氧化单位NADH2所吸收的磷酸盐量(P/NADH2)不同。引起两者P/NADH2值不同的最根本原因在于:以氧气作为电子受体和以硝态氮作为电子受体,消耗单位NADH2所产生的ATP量不同。在An/ASBR反硝化除磷系统中,测得该值为1.0molATP/molNADH2,此值较An/OS-BR型好氧吸磷系统降低了40%左右。  相似文献   

15.
Chae SR  Kang ST  Watanabe Y  Shin HS 《Water research》2006,40(11):2161-2167
A novel vertical submerged membrane bioreactor (VSMBR) composed of anoxic and oxic zones in one reactor was developed in an attempt to reduce the problems concerning effective removal of pollutants from synthetic wastewater including glucose as a sole carbon source as well as membrane fouling. The optimal volume ratio of anoxic zone/oxic zone was found as 0.6. The desirable internal recycle rate and hydraulic retention time (HRT) for effective nutrient removal were 400% and 8h, respectively. Under these conditions, the average removal efficiencies of total nitrogen (T-N) and total phosphorus (T-P) were 75% and 71%, respectively, at the total chemical oxygen demand (T-COD)/T-N ratio of 10. In addition, the VSMBR showed high specific removal rates of nitrogen and phosphorus while the biomass growth yield from the reactor was about 20% of the conventional activated sludge process.  相似文献   

16.
改善MSBR系统脱氮效果的试验研究   总被引:9,自引:0,他引:9  
MSBR工艺是连续流与序操作 相结合的新型生物脱氮除磷技术,由于它的后置反硝化设计,碳源不足制约了系统的脱氮效果。为了改善这种状况,进行了将部分原水分流至缺氧区的试验。结果表明:引入原水后,缺氧区的反硝化速率常数提高了一倍,系统的反硝化速率和脱氮率相应提高。与此同时,分流造成了厌氧区的碳源不 足,加之厌氧区的回流增加,引入了较多的硝酸盐,使磷的释放和过量吸收受到影响,除磷效果下降。另外,针对中间沉淀区暴露出的运行和设计问题提出了一些改进措施。  相似文献   

17.
浙江某污水厂设计规模为16×10^4m^3/d,采用Bardenpho—MBBR工艺进行升级改造后,生化池出水COD、NH4^+-N、TN、TP均值分别为17.2、0.37、7.72、0.168 mg/L,在不投加碳源的情况下即可达到准Ⅳ类水标准,生物脱氮除磷效果良好。对生化池各功能区沿程采样测定发现,好氧MBBR区对TN的去除率为28%~46%,受到泥浆水冲击后也能保持在15%~22%,系统高效去除TN得益于好氧MBBR区的同步硝化反硝化(SND)作用;由于好氧区的SND现象,平均可以节省0.23元/m^3的碳源费用,年节约碳源费用近1343.2万元;生物膜厚度和溶解氧的控制对于稳定表现SND有重要影响;系统中微生物的高通量测序结果显示,悬浮载体上硝化菌丰度为32.19%、反硝化菌丰度为4.86%,硝化菌和反硝化菌同时存在为SND现象的产生提供了微观保证;冬季低温时,悬浮载体实际承担了系统近90%的硝化负荷。  相似文献   

18.
溶解氧对反硝化聚磷菌的影响研究   总被引:1,自引:0,他引:1  
为考察在有氧条件下好氧聚磷菌与反硝化聚磷菌(DPB)可否共存,以模拟低碳城市污水为原水,在厌氧/缺氧运行的SBR内引入不同时长的好氧段以及在厌氧/好氧运行的SBR内采用相同时长的好氧段和不同的溶解氧浓度,考察了DO对DPB的存活及其除磷脱氮功能的影响。结果表明,聚磷菌(PAOs)以氧或硝酸盐氮为电子受体时的吸磷能力基本相同,且其在缺氧和好氧条件下的活性也基本相同;在有氧条件下,维持低氧环境有利于DPB反硝化除磷的实现,而高DO浓度则利于好氧吸磷。因此,DO对DPB的存活没有决定性影响,DPB和好氧PAOs可以共存,而对DO浓度的合理控制是实现反硝化除磷的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号