共查询到19条相似文献,搜索用时 109 毫秒
1.
2.
基于均值漂移的自适应纹理图像分割方法 总被引:2,自引:0,他引:2
提出了一种基于小波多尺度分析和均值漂移的无监督纹理分割方法.该方法利用均值漂移聚类实现基于小波特征的完全无监督自适应多尺度分割,既不需要进行训练也不需要分割类别数等先验知识.该方法根据一定的策略在尺度间进行信息传递,自适应地为图像不同区域确定合适的分割尺度,即纹理内部区域使用粗尺度特征而不同纹理间的交界处使用较细尺度特征,这样就在保证区域一致性的同时更准确地定位图像边缘.对比实验结果表明,该方法在合成纹理和真实纹理图像中都有较好的性能,其多尺度的分割过程类似于人类视觉系统感知,并且较之有监督的传统分割方法也更具优势. 相似文献
3.
针对传统非局部均值(NLM)算法的滤波参数非自适应及去噪后边缘易模糊的缺点,提出一种基于图像分割的非局部均值去噪算法。该算法分为两个阶段:第一阶段根据噪声大小及图像纹理自适应确定滤波参数的值,并采用传统非局部均值算法得到去噪结果图;第二阶段根据像素点方差的不同,将该去噪结果图分为细节区域和背景区域,再对属于不同区域的图像块分别去噪,同时为了更有效地去除噪声,还采用了反向投影的方式,充分利用了第一阶段方法噪声中残留的结构信息。实验结果表明,与传统非局部均值算法及其三种改进算法相比,所提算法的峰值信噪比(PSNR)及结构相似性(SSIM)更高,纹理细节和边缘结构更完整,图像更清晰,本真信息保留更完整。 相似文献
4.
5.
6.
针对非局部均值(NLM)去噪算法在变化丰富的纹理区域采用平移窗口的方法选择相似块的不足进行了研究,提出一种基于超像素分割的非局部均值去噪算法。该方法充分考虑非局部均值去噪算法中相似性对噪声去除的影响,利用经过超像素分割处理得到的图像块内部相邻像素间以及纹理边缘都具有一定相似性的特点,在超像素分割块基础上优化纹理区域相似窗口的选择策略,提高图像块与中心像素块之间的相似性,从而达到提升非局部均值算法的去噪水平、边缘纹理不被模糊的目的。在多幅经典自然图像上的实验结果表明,该方法能够有效的去除图像中包含的噪声信息,相比于传统的非局部均值方法,保留了更多的纹理信息。 相似文献
7.
针对有部分遮挡物或有噪声等复杂背景下海面图像的海天线检测效果欠佳的现象,提出一种有效的方法对海面可见光图像的海天线进行自动检测。该方法首先利用均值漂移(Mean Shift)分析方法对海面可见光图像提取边缘,提取后的图像的区域边界信息用嵌入置信度进行二次筛选,进一步鉴别图像像素属性,剔除一些伪边缘,最后进行Hough变换提取海天线。实验结果表明,所提出的方法不仅可以用于单一背景下海面图像的海天线检测,也可用于部分被遮挡或者其他复杂背景下的海天线检测。高斯噪声下的抗噪性能实验也验证了所提出的方法的鲁棒性。 相似文献
8.
9.
针对已有算法结果分割区域过多问题,提出采用边缘正交场构造重要性图,通过边缘特征稳定性约束分割区域,从而有效地提高分割质量。构造边缘正交场,通过高斯积分提高边缘线的连续性和稳定性。采用边缘特征进行距离变换,生成图像的重要性图。采用均值漂移进行图像预分割,根据相邻区域边界上的重要性强度对分割区域结果进行合并。实验结果表明,和原有分割方法相比较,算法在保持原始图像重要区域的同时,对细节区域进行有效合并,明显提高分割质量。 相似文献
10.
作为图像数据结构分割的重要工具,模糊C均值已被广泛应用于计算机视觉领域。然而模糊C均值在图像分割过程中不能有效地保留边缘和抑制噪声,往往得不到理想的分割结果。为解决这一问题,本文利用导向滤波器推导出一种新的改进模糊C均值算法。该算法的第一个创新点是其线性平移不变滤波过程,利用边缘保持平滑特性来保留分割中的边缘结构。第二个创新点是该技术通过将空间信息引入目标函数来改善对噪声的鲁棒性,空间信息通过导向滤波的平均输出获得。为了解决聚类算法中初始聚类中心问题,在图像分割过程中使用均值漂移算法选取初始聚类中心。本文方法的主要优点在于其对边缘保留和噪声具有鲁棒性,进而提高分割精度。基于合成图像和真实遥感图像的实验结果表明,与其他主流分割算法相比,该方法在分割性能方面表现出了良好的性能。 相似文献
11.
一种改进的自然图像分割方法* 总被引:1,自引:0,他引:1
提出了一种改进的Mean Shift自然图像分割方法。首先从数据分析的角度出发,由数据本身估计用于聚类的颜色带宽。然后根据上层的视觉任务调整颜色带宽,调整后的颜色带宽可以看作是分割分辨率。根据调整后的颜色带宽,估计每个像素的密度值,并采用直接搜索的方法搜索局部密度极大值点。在局部模式检测之后。通过一个全局标准控制的局部模式融合,就可以将图像分割成最终的结果。在不同的光照条件和复杂的背景下,这个全局标准能达到稳定分割结果和控制最终区域数目的目的。 相似文献
12.
基于粒子Mean Shift迁移的红外人体目标跟踪算法 总被引:2,自引:0,他引:2
提出了一种基于粒子Mean Shift迁移过程的红外人体跟踪方法.算法通过采样粒子迁移和聚类动态建立目标的状态模型和量测模型.在被跟踪区域随机布撒粒子,以各粒子对应像素的亮度作为特征值进行Mean Shift收敛性分析,使用收敛后的粒子集表达目标的当前状态;以状态粒子的坐标位置为特征值对其进行Mean Shift聚类,作为对目标的量测.连续跟踪时,下一帧的采样粒子基于上一帧的量测结果产生.与传统的基于序贯重要性采样的粒子滤波方法相比,算法不需要目标的相似性测度计算,仅用少数粒子即可实现对目标的可靠跟踪. 相似文献
13.
提出一种基于多尺度分析和均值漂移的谱聚类算法.该算法以Kway-Ncut算法为基础,通过缩小待分割图片的分辨率来实现快速和对大分辨率图片的分割.首先,利用均值漂移算法对图片进行预分割,随后缩减图像和预分割结果的分辨率.再利用预分割提供的先验信息和像素的空间一致性构建相似度模型,计算缩小后的图片像素相似度,使用Kway-Ncut进行分割.最后,将分割结果扩展为原始分辨率,用原始分辨率的预分类信息对图像边界及细节部分加以恢复,获得最终的分割结果.通过使用多幅彩色图像进行分割实验,结果表明文中算法在准确性和高效性方面都有良好表现. 相似文献
14.
为了寻找一种可以实际运用到学校监控系统的目标跟踪算法,文中对基本MeanShift算法进行描述,并阐述算法的实际意义。MeanShift虽然以其不需要参数、不需要穷尽搜索区域等特性可以较好地实现目标跟踪,但是同时其也有不足,让其在某些跟踪条件下达不到很好的效果。为了使MeanShift目标跟踪算法满足实际应用需求,通过添加核函数和增加权重的方式对基础MeanShift算法进行扩展,并在分析MeanShift算法的不足之后,提出一种MeanShift与Kalman滤波相结合的目标跟踪算法。通过学校的视频监控平台对提出算法进行验证,实验结果表明,该算法可以有效地对目标进行跟踪。 相似文献
15.
以向量空间模型作为Web文本的表示方法,结合Web文本的结构特征对向量空间模型中的特征选择算法进行了分析并加以改进。在改进的算法中,体现出了特征词在Web文档结构中的位置信息;引入了信息论中熵的概念,用词的熵函数对权值进行调整,从而更加准确地选取有效的特征词。实验验证了改进算法的可行性和有效性。 相似文献
16.
17.
近年来,视频车辆跟踪作为城市智能交通系统(ITS)的一个关键技术受到关注。本文针对传统粒子滤波的非线性、非高斯性可能导致跟踪过程的不稳健性,提出一种基于卡尔曼粒子滤波的视频车辆跟踪算法,该算法利用基于重要区域的目标颜色直方图统计模型对视频车辆目标进行建模,并将其应用于卡尔曼滤波更新中,通过采用Mean Shift算法将卡尔曼滤波器引用到粒子滤波器当中,对车辆的运行轨迹进行校正,实现了局部线性滤波,实现了在保持跟踪系统整体上的非线性、非高斯性的同时,兼顾其局部的线性高斯特性。实验结果表明,本文所提出的方法与传统粒子滤波方法相比,能够更准确地对车辆进行跟踪,同时保证了在复杂环境下性能的稳健性。 相似文献
18.
19.
基于数字图像处理技术的汽车轮廓提取 总被引:4,自引:0,他引:4
介绍了基于数字图像处理技术:灰度变换、图像平滑、阈值分割、轮廓提取与跟踪对汽车图像的轮廓进行了提取,效果良好,为后续的车位识别奠定了基础。 相似文献