首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
离子型疏水缔合共聚物的分子复合   总被引:1,自引:0,他引:1  
 通过丙烯酰胺(AM)/丁基苯乙烯(BST)/2-丙烯酰胺基-2-甲基丙磺酸钠(NaAMPS)阴离子共聚物(PASA)与丙烯酰胺(AM)/ BST/二甲基二烯丙基氯化铵(DMDAAC)阳离子共聚物(PBAD)的分子复合,得到复合型疏水缔合聚合物驱油剂PASA/PBAD。溶液表观黏度测试和AFM结果表明,反电荷的静电相互吸引作用能加强疏水基团的分子间缔合作用,形成流体力学体积巨大的缔合结构,使得当PBAD/ PASA复合聚合物中PBAD质量分数分别为15%和90%时,其质量浓度为2 g/l的水溶液和NaCl溶液(NaCl浓度为1.026 mol / l)的表观黏度分别为3561和227 mPa.s,远高于相同质量浓度PBAD和PASA单组分的水和NaCl溶液的表观黏度。在NaCl浓度更高 (1.710 mol/l)时,PASA/PBAD 的NaCl溶液的表观黏度仍能达到201 mPa.s,显示了其良好的抗盐性。复合聚合物溶液的耐温和抗剪切性能也得到了明显的提高。  相似文献   

2.
丁艳  朱竹 《石油化工》2013,42(9):973
以十八醇为原料,制备了长链疏水单体N-十八烷基丙烯酰胺(OAM);以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、二甲基二烯丙基氯化铵(DMDAAC)、OAM为单体,合成了水溶性疏水缔合两性共聚物AM/AMPS/DMDAAC/OAM。利用1H NMR,FTIR,DTA-TG手段研究了共聚物的结构和热稳定性,考察了OAM疏水单体含量、共聚物含量、AMPS含量、温度、剪切速率以及NaCl含量对共聚物溶液表观黏度的影响。实验结果表明,当OAM摩尔分数为1.0%、AMPS摩尔分数为25%、共聚物质量分数为2.5%时,共聚物溶液的增黏性能很好,溶液的表观黏度可达1 648 mPa·s。将疏水基团和两性离子同时引入分子链中,提高了共聚物的耐温抗盐和耐剪切性能,可作为三次采油的驱油剂。  相似文献   

3.
钟传蓉  黄荣华  刘强  代华 《石油化工》2003,32(12):1037-1041
实验室自制了疏水单体苯乙烯衍生物,合成了丙烯酰胺/苯乙烯衍生物(STD)/2-甲基-2-丙烯酰胺基丙磺酸钠疏水缔合水溶性共聚物(PASA)。研究了该共聚物的溶液性能,包括疏水缔合效应、共聚物中阴离子单体加入量的影响、抗盐性、抗剪切性、温度效应、溶液热稳定性、共聚物与表面活性剂的相互作用等。实验表明,引入STD使共聚物具有较强的疏水缔合效应和优良的增粘能力,溶液质量浓度为0 1g/dl时,表观粘度达208 5mPa·s。0 1g/dl的共聚物溶液于70℃下放置120d,表观粘度为105mPa·s,具有优良的热稳定性。表面活性剂对共聚物溶液表观粘度的影响显著,加入0 8mmol/L十二烷基苯磺酸钠时,0 1g/dl的PASA溶液的表观粘度高达2178mPa·s。  相似文献   

4.
疏水缔合水溶性丙烯酰胺—丙烯酸正辛酯共聚物的溶液性能   总被引:17,自引:1,他引:16  
周晖  黄荣华 《油田化学》1997,14(3):252-256
采用自由基胶束共聚法制备了水溶性的丙烯酰胺丙烯酸正辛酯疏水缔合共聚物。研究了共聚物水溶液的性能及其影响因素。随疏水基团含量增加,共聚物在水中的特性粘数[η]减小,代表分子线团间流体力学相互作用的Huggins常数KH增大。随共聚物浓度增加,在临界缔合浓度C以上,分子间缔合大量形成,水溶液表观粘度急剧增加。  相似文献   

5.
以甲基丙烯酸六氟丁酯(HFMA)为疏水单体、丙烯酰胺(AM)为主单体、二甲基二烯丙基氯化铵(DMDAAC) 为阳离子单体,以过硫酸钾和亚硫酸氢钠为复合引发剂,采用水溶液自由基共聚合法合成了氟碳型共聚物P(AM DMDAAC HFMA)。分别考察了反应温度、pH值、引发剂用量、疏水单体加入量等因素对P(AM DMDAAC HFMA)产率及其阳离子度的影响,同时考察了P(AM DMDAAC HFMA)的絮凝性能和对含油废水的除油效果。结果表明,在聚合温度55℃、聚合体系pH=7、引发剂(过硫酸钾和亚硫酸氢钠)用量为单体总质量的15%、m(AM)∶m(DMDAAC)∶m(HFMA)=68∶22∶10、总单体质量分数为28%的条件下,三元共聚物P(AM DMDAAC HFMA)的产率及其阳离子度最高,其对硅藻土悬浮液有较好的絮凝性能;在温度20℃、硅藻土悬浮液pH=7、P(AM DMDAAC HFMA)投加量10 mg/L条件下,硅藻土悬浮液上清液透光率和絮凝时间分别为995%和10 s。与聚丙烯酰胺(PAM)、实验室合成P(AM DMDAAC)相比,P(AM DMDAAC HFMA)对含油废水具有优越的除油效果;当共聚物加入量为30 mg/L、温度40℃、pH=10时,除油率达到952%。  相似文献   

6.
采用前加碱胶束共聚—共水解的制备方法,以丙烯酰胺(AM)单体为原料,引入疏水缔合单体(AMS-12)和表面活性剂OP,选择氧化还原/水溶性偶氮化合物复合引发体系,合成出1种二元共聚疏水缔合驱油聚合物S-12HPAM。围绕胶束聚合反应机理,考察不同反应条件对共聚物溶液粘度的影响,得到具有低分子质量和较高表观粘度的聚合物合成工艺条件。  相似文献   

7.
针对压裂液稠化剂所存在的杂质含量较高、储层伤害较大、耐温抗盐性较差、耐剪切性不足等问题,以丙烯酰胺(AM)和二甲基二烯丙基氯化铵(DMDAAC)为单体,采用水溶液聚合法制备了压裂液用阳离子聚合物稠化剂,考察了反应条件对产物相对值分子量和阳离子度的影响。实验结果表明,优化合成条件为:单体总质量分数为40%,n(AM)∶n(DMDAAC)=3∶1,反应温度45℃,引发剂用量(与单体质量比)0.05%,pH值为7;在聚合物加量为0.8%时,基液黏度为80.1 mPa·s,交联后体系黏度可达335 mPa·s。  相似文献   

8.
利用酰卤的胺解反应制备了疏水单体N-辛基丙烯酰胺(C8AM),并对其结构进行了表征。以氧化还原体系为引发剂,采用胶束聚合方法制备了疏水缔合水溶性共聚物聚(丙烯酰胺/丙烯酸钠/N-辛基丙烯酰胺)。研究了盐水溶液中疏水单体含量对特性粘数和Huggins常数的影响,以及聚合物浓度、表面活性剂含量、无机电解质NaCl和CaCI2含量、温度及剪切速率对聚合物水溶液表观粘度的影响。结果表明,随疏水基团含量增加,特性粘数[η]减小、Huggins常数增大;共聚物亚浓溶液的表观粘度随疏水基团含量的增加而增加,随温度、剪切速率的增加而降低,共聚物在NaCl、CaCl2盐水溶液中出现盐增粘现象。  相似文献   

9.
为揭示疏水缔合聚合物结构与性能的关系,采用稳态应力扫描、剪切速率扫描、频率扫描等流变性实验方法,研究了疏水缔合聚合物(丙烯酰胺、丙烯酸钠和十二烷基丙烯酰胺共聚物,疏水单体十二烷基丙烯酰胺含量0.2 mol%)的微嵌段长度(NH)对其流变性能的影响规律。研究结果表明:随着微嵌段长度的增加,聚合物的缔合效应加强,更易于形成可逆空间网络结构;同时其临界缔合浓度(CAC)逐渐降低,会使其增黏能力、黏弹性能均有很大提升;当NH 从3.3 增至12.5 时,CAC 从1684 mg/L 降为846 mg/L,零剪切黏度从204.73 mPa·s 增至65833.19 mPa·s,松弛时间从0.07 s 增至12.64 s。流变实验结果表明,疏水缔合聚合物的缔合与解缔合是一个可逆的动态过程,微嵌段长度越长,经剪切作用破坏后的结构黏度重新恢复速度越慢,但其恢复后的黏度越高。在一定范围内升高温度和增加溶液离子强度有利于增强缔合效应,从而促使疏水缔合聚合物的抗温、抗盐性能在一定程度上提高。图8表1 参33  相似文献   

10.
耐高温压裂液增稠剂的制备及耐温构效关系   总被引:1,自引:0,他引:1  
高温稳定性是疏水缔合聚合物压裂液最重要的性能之一。本试验用水溶液聚合制备了带有刚性侧基的疏水缔合聚丙烯酰胺(HACA),并研究了其流变性和耐温性。研究发现,4%(w)HACA水溶液在150C、170s^-1条件下剪切2h,表观粘度为99mPa·s;与普通聚丙烯酰胺(PAM)溶液相比,两者稀溶液特性粘数相近,而HACA半稀溶液表观粘度更高,说明HACA在水溶液中发生了疏水缔合作用;相对于普通PAM以及只含单一疏水基团或者刚性基团的PAM来说,HACA体系有更强的增粘能力、更快的粘度回复速度以及更好的高温稳定性。本试验的研究成果对疏水缔合型聚合物压裂液体系的开发研究工作有一定的指导意义。  相似文献   

11.
以丙烯酰胺(AM)、二甲基二烯丙基氯化铵(DMDAAC)疏水单体乙酸乙烯酯(VAM)为原料,在过硫酸钾-亚硫酸氢钠引发剂存在下,通过水溶液自由基胶束共聚合法合成了新型疏水缔合阳离子型水溶性高分子絮凝剂P(AM-DMDAAC-VAM)。通过单因素实验考察了各因素对聚合物特性黏数的影响,结果表明:在单体总质量分数为30%,反应温度70℃,引发剂用量1.2%(占单体总质量分数),pH值7,反应时间8h的条件下,共聚物特性黏数达到1.263L/g,产物结构经过红外光谱进行了确证。  相似文献   

12.
以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、二甲基二烯丙基氯化铵(DMDAAC)为单体,根据自由基聚合反应原理,合成出增粘提切剂YF-01。考察了单体质量比、反应温度、引发剂用量、单体含量、反应时间等对其表观粘度和静切力的影响。结果表明,在单体质量比(AM:AMPS:DMDAAC)7:4:1,单体禽量40%,引发剂用量0.15%,反应温度45℃,反应时间75rain最佳条件下,合成的增粘提切剂YF-01产品使泥浆表观粘度由56mPa·s提高到211mPa·s,初切力由4.078Pa提高到12.365Pa,终切力由4.699Pa提高到13.897Pa。  相似文献   

13.
采用水溶液聚合后水解法,以丙烯酰胺(AM)、(4-丙烯酰胺基)苯基十四烷基二甲基溴化铵(PTDAB)、2-丙烯酰胺基-2甲基丙磺酸(AMPS)为原料合成了疏水缔合聚合物P(AM/PTDAB/AMPS/NaAA),通过考察反应条件对合成聚合物的特性黏数、溶解性以及增黏性的影响规律确定了最佳合成条件,研究了最佳合成条件下所合成聚合物的耐温抗盐性、剪切稳定性以及热稳定性。聚合物的最佳合成条件为:PTDAB加量为总单体质量的0.5%~0.8%,AMPS加量为总单体质量的15%,总单体质量分数为25%,复合引发剂加量为总单体质量的0.1%,pH值为8,引发温度30℃。采用矿化度100 g/L的盐水配制的质量浓度2000 mg/L的合成聚合物溶液的黏度仍大于30 mPa·s;采用矿化度20 g/L的盐水配制质量浓度2000 mg/L的合成聚合物溶液在转速5000 r/min下剪切3 min再静置4 h后的黏度保留率可达80%以上;聚合物溶液在85℃高温老化150 d后的黏度大于20 mPa·s。所合成四元共聚物表现出优异的耐温抗盐性、剪切稳定性以及热稳定性,性能优于高相对分子质量抗盐聚丙烯酰胺P(AM-AMPS-NaAA)。  相似文献   

14.
两步法合成氯化二甲基二烯丙基铵的研究   总被引:2,自引:0,他引:2  
采用两步法 ,即第一步由二甲胺与氯丙烯合成二甲基烯丙基叔胺 ,第二步由叔胺与氯丙烯合成高纯度氯化二甲基二烯丙基铵 (DMDAAC)阳离子单体 ,考察了原料选择、合成条件和精制方法。结果表明 ,用叔胺中间体合成DMDAAC时 ,控制滴料温度 2 5℃ ,回流温度 45℃ ,产物收率最高达 97.6%。采用分液、减压蒸馏和活性炭脱色等提纯手段 ,得无色透明DMDAAC溶液 ,经聚合可得特性粘数达 2 .14dL/g的PDMDAAC  相似文献   

15.
采用水溶液自由基胶束聚合法,以丙烯酰胺(AM)、二甲基二烯丙基氯化铵(DMDAAC)、丙烯酸丁酯(BA)为原料,合成了疏水缔合阳离子型聚丙烯酰胺(P(AM-DMDAAC-BA))絮凝剂。采用傅里叶变换红外光谱(FTIR)、核磁共振氢谱(1HNMR)对P(AM-DMDAAC-BA)絮凝剂的结构进行了表征,考察了P(AM-DMDAAC-BA)絮凝剂中阳离子单体(DMDAAC)含量和疏水单体(BA)含量、特性黏数、投加量对含油废水除油效果的影响,并与其他有机絮凝剂的除油效果进行了比较。FTIR和1HNMR表征结果显示,AM,DMDAAC,BA3种单体已参与聚合;在x(DMDAAC)=20.0%~50.0%、x(BA)为2.0%左右、特性黏数为500~700mL/g时,P(AM-DMDAAC-BA)絮凝剂对含油废水具有较好的除油效果;当x(DMDAAC)=24.3%、x(BA)=2.0%、特性黏数为636mL/g、投加量为50mg/L时,除油率可达93.4%;与其他有机高分子絮凝剂相比,P(AM-DMDAAC-BA)絮凝剂具有优异的除油效果。  相似文献   

16.
合成了新型单体4-烯丙基庚烷基苯酚(AHP ),然后以丙烯酰胺(AM)为主要原料、引入单体AHP,同时引入适量的2-丙烯酰胺基-2-甲基丙磺酸(AMPS),采用水溶液自由基胶束聚合法合成了疏水缔合AM-AMPS-AHP三元共聚物(PAMA)。利用1H-NMR和FT-IR分别对AHP和PAMA进行表征。考察AHP加入量、聚合物浓度、NaCl浓度和温度对共聚物溶液黏度的影响。结果表明,引入AHP单体使共聚物具有优良的增黏和抗盐能力,含AHP(摩尔分数为1.0%)、质量浓度为1 500 mg/L的 PAMA溶液在53 ℃、20 000 mg/L NaCl盐水中的黏度达到178.6 mPa?s,在90 ℃、7 000 mg/L NaCl盐水中的黏度达到110.8 mPa?s,显示出良好的耐温、抗盐性能。  相似文献   

17.
反相乳液聚合合成AM/DMDAAC阳离子共聚物   总被引:8,自引:1,他引:8  
以丙烯酰胺(AM)、阳离子单体二甲基二烯丙基氯化铵(DMDAAC)为原料,用反相乳液聚合法合成了AM/DMDAAC阳离子共聚物,利用单因素实验分别研究了引发剂种类、引发剂用量、单体用量、nAM∶nDMDAAC、反应时间、反应温度等合成条件对共聚物的特性粘数和阳离子度的影响。确定出了最佳反应条件为:nAM∶nDMDAAC=2∶1,单体总质量分数30%,反应温度45℃,pH=7,反应时间5~6h。  相似文献   

18.
超分子聚合物化学是超分子化学与高分子化学相互交叉融合形成的新方向,因此基于前期对超分子压裂液的研究成果,采用对疏水单体增溶性能好的ASF-1两性离子表面活性剂,与自制的LCM长碳链阳离子不饱和成链单体、自制的HTM抗高温单体等进行胶束共聚合反应,合成了一种高温耐剪切的超分子聚合物稠化剂SPM-2。通过复配具有蠕虫状胶束的物理交联剂PCA-1,制备出一种超分子缔合弱凝胶压裂液(0.8% SPM-2+0.5% PCA-1)。该压裂液具有超分子“蜂巢”网格结构,表观黏度随物理交联剂加量增大而持续增加,达到了胶束与聚合物链的强物理交联效果。该压裂液在150℃、170 s-1、2 h下表观黏度保持在58 mPa·s左右,相比超分子聚合物溶液提高了30 mPa·s ;剪切速率从40 s-1增至1 000 s-1,再降到40 s-1后,压裂液黏度迅速降低并快速恢复,剪切回复性好;在0.01~10 Hz内进行频率扫描,压裂液弹性明显优于黏性;支撑剂沉降速率小于8×10-3 mm/s,悬砂能力相比稠化剂溶液提高了一个数量级;在90℃、2 h下破胶液黏度小于2 mPa·s,未检出残渣;岩心伤害率小于10%。室内实验结果表明,该压裂液可满足致密砂岩气藏高温储层压裂需求。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号