首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
在特定搅拌槽条件下,针对穿流式斜叶桨式搅拌器,在常用的最高转速300 r/min以内,就开孔位置、开孔率、开孔直径等结构参数进行了数值模拟.将搅拌器以及附近区域都设为动区域进行模型简化处理,基于四面体网格对模型进行网格划分,采用多重参考系稳态处理法,选用标准k-ε湍流模型求解搅拌流场.引入搅拌系数K,从混合效果和功率消耗两方面综合评价搅拌器的优劣.搅拌功率实验和分布时间实验较好地验证了数值模拟的结论.研究表明,相较于传统搅拌桨,穿流式搅拌桨因能强化涡流扩散、减小桨叶投影面,可获得更好的混合效果和更低的功耗,且随着搅拌转速的增大,功耗降低的越明显;搅拌功率和混合时间随开孔率和开孔直径而变化,当开孔率为12%左右、开孔直径为8 mm左右时,搅拌功率和混合时间最小,最为优化.  相似文献   

2.
双层桨叶搅拌器流场的CFD模拟与PIV测量   总被引:3,自引:3,他引:0  
利用CFD技术和PIV测量研究了搅拌器内双层桨叶不同位置的流场和浓度分布.基于Navier-Stokes方程和标准κ-ε湍流模型,求解搅拌器的湍流场,考察了在不同转速和不同桨叶高度下搅拌器的流型变化和混合浓度情况.结果表明:改变双层桨叶位置,流场的流型基本不发生变化,均以桨叶为中心形成上下"双循环"流动;随着加料位置和桨叶高度的变化,对搅拌功率基本没有影响,但时不同监测点的浓度变化较大,对混合时间的影响也较大;采用桨叶部位加料可以充分利用流体的湍流特性,加快混合速度,缩短混合时间,节约成本,提高经济效益.  相似文献   

3.
采用FLUENT软件对搅拌器内部流动情况进行了二维数值模拟,研究了不同桨叶直径、桨叶转速和桨叶数对搅拌器内部流场的影响.结果显示:在同一工况下,桨叶直径为600 mm的搅拌效果比桨叶直径为400 mm和500 mm的搅拌效果好;桨叶转速为6rad/s的搅拌效果比桨叶转速为2rad/s和4rad/s转速效果好;八叶桨式搅拌器的搅拌效果较四叶桨式搅拌器和六叶桨式搅拌器稍好.模拟证实搅拌器桨叶直径、桨叶转速和桨叶数的增加有利于搅拌的混合均匀,但桨叶直径和桨叶数的增加使得搅拌器桨叶加工复杂,生产成本提高;桨叶转速也受制于搅拌器和搅拌轴的结构尺寸,不能无限增大.所以需要综合考虑各种因素的影响,才能选出最合适最经济的桨叶直径、转速和桨叶数.  相似文献   

4.
以潜水搅拌器桨叶为研究对象,探讨其参数对搅拌效果的影响规律。以CFD软件为计算平台,采用标准k-ε方程,建立潜水搅拌器桨叶区的二维几何模型,运用多重参考系法(MRF)对区域进行划分,模拟不同桨叶直径、桨叶转速及桨叶数的潜水搅拌器内部流场。研究表明:搅拌桨直径、转速以及片数的增加均有利于流体均匀混合,搅拌效果更好。  相似文献   

5.
搅拌设备效率的高低在很大程度上取决于其内部流场的结构,因而对流场的研究就十分重要.采用FLUENT软件对自行设计的摆动式搅拌槽内的流场进行数值模拟,模拟时运用动网格技术来指定搅拌器的运动规律,采用标准κ-ε模型对速度场进行了求解.结果表明:槽内的流场为充分发展的湍流,摆动式搅拌为径向流搅拌,桨叶上方的流动以切向剪切为主,下方以径向流为主.  相似文献   

6.
大规模地形场景流式渐进传输   总被引:1,自引:0,他引:1  
着重考察了搅拌器类型以及搅拌转数对氧气动态传质过程的影响.采用计算流体力学(CFD) 对氧气动态传质过程进行了数值模拟,并结合实验以及粒子成像技术(PIV)对模拟结果进行了验证.结果表明,采用Fluent软件并结合用户自定义方程(UDF)能够很好地模拟实际搅拌器内的流场分布.采用氧气传质模型能够预测氧气在搅拌器内的动态传质过程.氧气浓度与溶解时间的对数关系式较好地描述了试验搅拌器内氧气的动态传质过程.在相同搅拌速度下,圆盘涡轮式搅拌器产生的湍流动能分布范围大于浆式搅拌器产生的湍流动能分布范围,而且湍流动能分布更加均匀,湍流强度更大.采用圆盘涡轮式搅拌器有利于增强氧气传质过程.圆盘涡轮式搅拌器比浆式搅拌器的溶解氧浓度高.当搅拌器类型相同时,随着转速的增加,溶解氧浓度增加.  相似文献   

7.
针对搅拌槽内处理层流状态下高黏度流体时混合效率偏低的现象,提出一种偏心轴(轴结构为曲轴)搅拌方式。首先以纯度为99%的甘油为介质,传统的二叶平桨为研究对象,对直径0.3 m的搅拌槽内的层流流场进行数值研究。中心搅拌时速度模拟结果与试验结果对比,验证了所建模型及模拟方法的可靠性。研究发现,与中心搅拌相比,偏心搅拌和偏心轴搅拌所产生的流场结构是非对称的;相同转速下,偏心轴搅拌相比中心搅拌时流体的槽内整体的体积加权平均速度增大了约68%,功率准数比中心搅拌增加了约15.3%;偏心轴搅拌对槽内速度的提升,扩大了流体扰动范围,对提高槽内流体混合效率具有一定的优势。  相似文献   

8.
针对搅拌槽内处理层流状态下高黏度流体时混合效率偏低的现象,提出一种偏心轴(轴结构为曲轴)搅拌方式。首先以纯度为99%的甘油为介质,传统的二叶平桨为研究对象,对直径0.3 m的搅拌槽内的层流流场进行数值研究。中心搅拌时速度模拟结果与试验结果对比,验证了所建模型及模拟方法的可靠性。研究发现,与中心搅拌相比,偏心搅拌和偏心轴搅拌所产生的流场结构是非对称的;相同转速下,偏心轴搅拌相比中心搅拌时流体的槽内整体的体积加权平均速度增大了约68%,功率准数比中心搅拌增加了约15.3%;偏心轴搅拌对槽内速度的提升,扩大了流体扰动范围,对提高槽内流体混合效率具有一定的优势。  相似文献   

9.
着重考察了搅拌器类型以及搅拌转速对氧气动态传质过程的影响,通过采用计算流体力学 (computational fluid dynamics,CFD) 对氧气动态传质过程进行了数值模拟,同时结合实验,对模拟结果进行了验证.结果表明,(1)采用Fluent软件并结合用户自定义方程(user defined function,UDF)能够很好地模拟出实际搅拌器内流场分布,模拟结果与采用粒子成像技术(particle image velocity,PIV)的实验测量结果相符;(2)采用氧气传质模型能预测氧气在搅拌器内的动态传质过程,同时氧气浓度与溶解时间的对数关系式能较好描述试验搅拌器内氧气动态传质过程;(3)在相同搅拌速度下,圆盘涡轮式搅拌器产生的湍流动能分布范围要大于桨式搅拌器产生的湍流动能,而且湍流动能分布更均匀,湍流强度更大.因此采用圆盘涡轮式搅拌器有利于增强氧气传质过程的进行;(4)在搅拌器类型相同时,随着转速的增加,容器内溶解氧浓度随之增加;圆盘涡轮式搅拌器比桨式搅拌容器内溶解氧的浓度要高,圆盘涡轮式搅拌器更有助于氧气的传质.  相似文献   

10.
简述了生物搅拌器的桨叶型式,利用计算流体力学软件对发酵罐内的流场进行了数值模拟.针对某抗菌素厂发酵罐t直径D=3 800 mm,液位高度H=8 600 mm,均布4块挡板,转速n=110 r/min,上层搅拌器为三层A315搅拌器,原底桨使用Rushton涡轮搅拌器,现改用六叶涡轮搅拌器,对其流场进行了模拟分析比较,结果显示后者有利于罐内发酵液的物质交换,搅拌效果得到改善.  相似文献   

11.
利用计算流体力学的方法,采用Laminar层流模型对双层六直斜叶交替组合桨在甘油与水的混合物中进行中心及偏心搅拌的三维流场进行数值计算,得到了组合桨以恒转速200r/min在搅拌槽内转动时所产生的3种不同流场结构,对比分析了速度矢量图、速度云图以及轴向、径向和周向速度分布曲线,为层流搅拌槽的设计和实际应用提供了依据。  相似文献   

12.
采用CFD方法对底部不同结构尺寸对数螺线挡板的搅拌釜内流场特性进行了数值模拟。模拟采用多重参考系方法、滑动网格法和k-ε湍流模型。在100r·min-1转速下,对不同结构尺寸底部挡板流场进行模拟分析。结果表明:增大底部挡板弦长与宽度有利于强化搅拌釜混合效果,缩短混合时间。底部挡板改善了叶轮区以下区域的流动状况,轴向流动与挡板弦长和宽度成正相关,与离心距离成负相关。底部挡板对将剪切速率有一定的提高,增加弦长与宽度有利于剪切水平提高。  相似文献   

13.
为了提高低比转速离心泵的效率,一般会将叶轮叶片出口角加大一些,但会引起H-Q曲线有驼峰,导致泵在小流量区运行不稳定.本文以国内某水泵厂生产的比转速为47的单级单吸式离心泵为研究对象,采用正交试验法选择叶轮出口边斜切比、出口角度、叶轮轴线倾斜角度、叶片包角、叶片进口边位置5个因素,每个因素采用4个水平,一共16个叶轮设计...  相似文献   

14.
采用PC-6D浓度测量仪研究了无挡板Rushton桨搅拌槽内石英砂-水两相体系的固液悬浮过程,测量了不同桨叶安装高度和桨径比时的临界悬浮转速,分析了桨叶安装高度、桨径比以及搅拌转速对固相浓度分布和功率消耗的影响。结果表明,无挡板时的临界悬浮转速和功率准数比有挡板时小,且随桨叶安装高度的增大而增大,随桨径比的增大而减小;对于无挡板固液悬浮,C=T/5、D=T/3时的悬浮性能最好,增大桨径比和搅拌转速均不能明显改善固液悬浮效果。  相似文献   

15.
为了提高搅拌容器内的气液混合效果,在标准Rushton桨的基础上,用格栅圆盘代替实体圆盘,设计一种格栅搅拌桨.采用计算流体力学的方法,研究双层格栅桨的气液混合性能,并与标准Rushton桨进行了对比.研究结果表明:在所研究的工况条件下,双层格栅桨搅拌容器内的流型仍为典型的双循环流动结构,但搅拌桨附近流体的轴向速度和泵送...  相似文献   

16.
由于施工扰动会导致洞室群的围岩劣化,对洞室群失稳产生诱导效应。为模拟洞室拉破坏和剪破坏两种典型的破坏特征,分别设计了水平和对角倾斜间隔三圆孔平板水泥砂浆模型,分别为洞室间隔矩形空孔、石蜡填充空孔和石膏填充空孔,模拟围岩由强到弱损伤的诱导效应,并定义其劣化指标。利用数字散斑系统MatchID-2D研究单轴逐级加卸载循环下无填充、石蜡填充和石膏填充空孔条件下的变形破坏特征,发现诱导程度越强,模型破坏荷载越小;同样,诱导条件下对角倾斜间隔三圆孔较平孔的破坏荷载小,平孔模型以拉破坏为主,斜孔模型以剪破坏为主。利用FLAC3D数值模拟软件进行加卸载试验,对洞室周围进行变形监测与MatchID-2D的引伸计功能进行对比,分析诱导对通过平孔模型的圆孔中心和诱导平孔中部竖直方向收敛的影响规律,发现平孔诱导空孔填充材料能明显降低中间圆孔和诱导平孔收敛,斜孔模型中间圆孔收敛呈类似特征。  相似文献   

17.
以NaCl颗粒在水中的溶解为例,对湍流状态下周期性变速旋转的(改变桨叶转向或速度大小,分别称为周期性换向搅拌和周期性依时搅拌)Rushton桨搅拌槽内的混合特性进行了实验研究,并与稳速搅拌进行了对比。实验过程中测量了不同搅拌模式、不同桨叶安装高度时颗粒的溶解时间,结果证明,搅拌槽底部的流型对NaCl的溶解有重要影响;桨叶安装高度对溶解速度的影响不大,周期性依时搅拌时的溶解时间比稳速搅拌时稍短,而周期性换向搅拌则能明显加快溶解速度,提高混合效率。  相似文献   

18.
为研究厨余垃圾固态发酵反应器中机械搅拌装置的搅拌流场特性及优选机械搅拌设计参数,采用计算流体力学技术(CFD)方法模拟5种机械搅拌桨型的混合流场,并对搅拌桨的桨径比、转速等参数通过搅拌功率、混合时间、混合能和死区百分比等指标进行定量分析.模拟结果表明:二折叶搅拌桨、六折叶涡轮搅拌桨死区百分比大,对物料扰动范围小,不能有效进行混合;双螺带搅拌桨死区百分比最小,对物料扰动范围最大,搅拌功率也最大.对于双螺带搅拌桨桨径,物料死区随桨径比的增加而减小,当桨径比增大至0.75后不再减小,而搅拌功率随桨径比增大而一直增大.对于双螺带搅拌桨,随着转速增加,搅拌功率呈直线式增加,混合时间以抛物线式降低,混合能逐渐增加.综合考虑混合效果和搅拌功耗,转速为20 r/min、桨径比为0.75的双螺带搅拌桨是本研究反应器中的最佳搅拌设计.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号