首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
利用络合剂三聚磷酸钠在微波条件下对凹凸棒石粘土进行改性.改性后的凹土用来处理废水中的重金属离子,考察了pH值、吸附时间、凹土用量等因素对废水中重金属离子处理的影响.结果表明经络合剂修饰的凹土对重金属离子废水的处理明显优于未进行络合修饰的凹土.最佳条件下对Pb2+、Cd2+、Mn2+的去除率都达到90%以上.  相似文献   

2.
赤泥在脱除废水中重金属离子的应用研究   总被引:2,自引:0,他引:2  
为去除废水中的重金属对环境的危害,采用具有高的比表面积和孔隙率、较好的吸附性能廉价赤泥作为废水中重金属离子的吸附剂。实验结果表明,赤泥对Pb^2+,Cd^2+,Cr^3+,Zn^2+,Ni^2+的对数吸附等温线都近似直线,基本符合Freundlich公式,且在室温条件下进行就能很快达到吸附平衡,不需要进行温度和pH的调节。当赤泥的添加量为2,0g/L时,Pb^2+,Cr^3+和Cd^2+的吸附率分别达到90%,94%,85%以上。赤泥对重金属离子的吸附率随废水中其初始浓度的增大而减小。  相似文献   

3.
对改性花生壳处理含Cr6+废水进行研究,考察吸附时间、改性花生壳投加量、pH值、Cr6+溶液初始浓度对吸附效果的影响。实验结果表明,在吸附时间100min、改性花生壳投加量为5.0g/L、pH值2.0、Cr6+溶液初始浓度25mg/L、常温的优化实验条件下,硝酸改性花生壳比盐酸改性花生壳吸附效果好,硝酸改性花生壳吸附率达到87%,盐酸改性花生壳为71%。改性花生壳是一种较高效的重金属离子吸附剂。  相似文献   

4.
研究了邯郸钙基膨润土及其钠化改性土对模拟废水中Ni^2+的吸附行为,探索了膨润土用量、吸附时间、pH值、初始离子浓度和温度等因素对Ni^2+吸附效果的影响。结果表明,实验所用两种膨润土对Ni^2+的吸附在15min时基本达到吸附平衡,吸附率随溶液pH值的增大、吸附剂用量的增加、搅拌时间的延长而增大;钠化土的吸附效果明显优于钙基土,Ni^2+的去除率可达96%以上;经钠化土处理后废水中的Ni^2+浓度为0.825mg/L,低于国家排放标准1mg/L。  相似文献   

5.
将不同浓度盐酸活化的凹凸棒粘土用于含铬的模拟废水,并进行了吸附研究.考察了盐酸浓度、振荡时间、粘土加入量和PH值等因素对浓盐酸处理凹凸棒粘土吸附Cr^6+性能的影响.结果表明,酸化凹土对Cr^6+的去除率与振荡时间、pH值、粘土加入量成正比.酸化凹凸棒粘土处理废水的最佳工艺条件为:投入量0.5g,震荡时间15min,pH10.经酸化凹凸棒土的吸附能力较原土有较大的提高,酸化凹凸棒粘土对Cr^6+的等温吸附曲线同时符合Langmuir方程和FreundIich方程,而原土对Cr^6+的等温吸附曲线符合Freundnch方程.  相似文献   

6.
等级粉煤灰和改性粉煤灰处理印染废水   总被引:2,自引:0,他引:2  
利用一级、二级粉煤灰(商品级干灰)和盐酸改性粉煤灰对印染废水进行了去除COD和色度的处理研究。对于COD为970mg/L、色度为1.67倍的印染废水,在pH为2、投灰量为10g/L时,经一级、二级粉煤灰处理后,COD和色度分别降低到522mg/L、533mg/L和33倍、35倍;在未调废水pH,投灰量为20g/L,经盐酸改性一级粉煤灰处理,COD和色度分别降低到252mg/L和90倍.  相似文献   

7.
用15%氢氧化钠对芦苇进行改性制成芦苇吸附剂,并进一步研究了该吸附剂对印染废水中Pb^2+的吸附过程。考察了吸附剂投加量、吸附时间、pH值以及溶液初始浓度等因素对吸附性能的影响。结果表明:在含Pb^2+为40-160 mg/L的模拟废水中,吸附剂用量为2 g/L、粒径为150μm、pH值为4的最佳实验条件下,吸附120 min后基本达到平衡,去除率最高可达95%以上。吸附过程可用Langmuir等温方程较好地拟合,改性芦苇对Pb^2+的最大吸附量为144.1 mg/L。  相似文献   

8.
对十八烷基三甲基氯化铵改性累托石在不同条件下吸附含铬(Ⅵ)废水的能力进行研究。结果表明,溶液中Cr^6+的初始浓度、有机改性累托石的用量、吸附反应时间等对烷基铵改性累托石的吸附作用有一定影响。吸附反应60min即可达到平衡。而且Cr^6+在改性累托石表面的吸附符合Freundlich方程,即:Г=2.068C^0.44。酸性环境有利于有机累托石对Cr^6+的吸附,当pH值为4-5时,有机累托石用量为5g/L,用有机累托石可将含铬(Ⅵ)为10mg/L,的废水处理到含铬(Ⅵ)浓度仅为0.463mg/L,达到国家规定的≤0.5mg/L的标准。  相似文献   

9.
用火法对粉煤灰进行改性处理,改性后粉煤灰的物理化学性质变化较大,新生矿物相有A型沸石和Na-P型沸石.通过正交实验,建立了最佳改性及处理含Cu2 废水的工艺条件:原状粉煤灰与Na2CO3质量比为1∶2,NaOH浓度为1 mol/L,固液比为1∶5;2 g改性粉煤灰对250 mL浓度为20 mg/L的Cu2 模拟废水的吸附率达97%.处理含Cr6 废水的最佳条件为:改性粉煤灰5 g置于250 mL浓度为3 mg/L,pH=7的废水中,搅拌时间30 min,对Cr6 吸附率达89.6%,处理后的废水Cr6 浓度为0.31 mg/L,低于国家废水排放标准(0.5 mg/L).  相似文献   

10.
主要研究凹土的物理吸附法与菌种的生物降解法相结合条件下含酚废水的降解。首先对凹土进行提纯、酸改性及有机改性以获得能够使菌株更好吸附的凹土载体。然后,进行苯酚降解性能的测试。通过实验得出以下结论:经过酸改性与有机改性的凹土比表面积更大、内孔径更大、亲水性更强、表面电荷分布更多;降解性能最好的载体是有机改性凹土-菌种复合载体,其苯酚降解率达97%,酸改性凹土-菌种复合载体次之,其降解率达84%,而最差的是原凹土-菌种复合载体,降解率仅为61%。  相似文献   

11.
目的研究粉末活性炭对生活饮用水中钼污染物的去除效果,通过试验确定最适宜的PAC种类、投加量、吸附时间、pH等工艺参数,为饮用水中钼污染物的去除提供依据.方法以自配的钼质量浓度为1mg/L溶液为原水,模拟钼污染的饮用水,通过试验验证粉末活性炭吸附对钼污染物的去除效果.结果粉末活性炭对钼污染物的吸附在40min内能达到吸附容量的80%~90%;粉末活性炭对钼污染物的吸附等温线符合弗兰德里希(Freundlich)吸附模式,在钼的平衡质量浓度为0.07mg/L时,粉末活性炭对其吸附容量大约为12mg/g.结论比表面积大的木质粉末活性炭适合对钼污染饮用水的处理,溶液的最佳pH值范围为5—8.  相似文献   

12.
本文主要研究了骨炭吸附除氟的最佳工艺条件:当投药量为6g/L,在pH=7,反应时间为60min,T=15℃的条件下,未改性骨炭对氟离子初始浓度为10mg/L的模拟废水的处理率达到81.2%;采用硫酸铝对骨炭进行改性,当投药量为6g/L,在pH=6,反应时间为60min,T=15℃的条件下,能使氟离子初始浓度小于10mg/L的废水出水小于1mg/L,处理氟离子初始浓度为10mg/L的废水去除率达到92.2%。  相似文献   

13.
The iron and manganese absorption properties of several filter media were studied.Four plain filter media and six surface-modified media were examined.The surface modification was performed using potassium permanganate as a surface treatment.The surface-modified manganese sand was found to be most efficient at removing iron and manganese from water.The metal concentrations in filtered effluent were between 0.01 and 0.04 mg/L, which is far lower than the standard for recycle water.A concentration of 5% KMnO4 was found to be most effective as surface modifier.The surface of the manganese sand modified by 5%KMnO4 was examined and found to be covered with a dense membrane of some compound.The membrane had the advantages of uniform texture, large surface area and physical and chemical stability.It was effective at removing iron and manganese from mine water.  相似文献   

14.
临南油田注入水改性pH值优化研究   总被引:1,自引:0,他引:1  
临南油田产出水矿化度高且呈弱酸性,导致处理后的注入水腐蚀性强、结垢严重,注入水严重不达标.研究了注入水水质改性的工艺原理以及注入水改性pH值与腐蚀性、污泥量和结垢的关系,确定了临南油田注水改性优化的pH值为8.20.临南注入水改性后,腐蚀电流密度不及原注入水的1/3,污泥量也仅为优化前污泥量的1/5,结垢量也大大降低.现场应用表明,水质主要指标达标;管网井筒结垢、腐蚀减轻;注水井增注效果变好;注水井启动压力下降、吸水指数提高,对油田开发步入良性循环起到积极作用.  相似文献   

15.
为提高0Cr18Ni9Ti奥氏体不锈钢在特殊应用环境的耐酸腐蚀性能,采用双辉等离子渗金属技术在不锈钢基体表面渗锆,对渗锆合金层的相结构进行检测分析,将奥氏体不锈钢基体试样和表面渗锆试样分别在0.5 mol/LH2SO4溶液、0.5mol/L HNO3溶液、0.5 mol/L HCl溶液进行电化学腐蚀对比试验。结果表明:在H2SO4溶液、HNO3溶液、HCl溶液中,不锈钢基材的相对腐蚀速度分别是渗锆合金层的2.18倍、9.73倍、24.43倍;不锈钢基体表面腐蚀较为严重,而渗锆合金层表面仅出现轻微的局部腐蚀坑。奥氏体不锈钢表面渗锆后,渗锆合金层中合金元素呈梯度分布,且腐蚀时在表面形成了一层致密的氧化锆钝化膜,因而其抗酸腐蚀性能相对基体大幅提升,在HCl溶液比在H2SO4溶液和HNO3溶液中耐蚀效果更明显。  相似文献   

16.
目的研究凹凸棒石吸附废水中阴离子表面活性剂LAS的可行性及处理效果,考察其吸附LAS的一般规律.方法以自配LAS水样为处理对象,比较凹凸棒石原土和不同改性方法改性的凹凸棒石对LAS的吸附效果,选择吸附剂;分析反应时间、温度和pH对经盐酸改性后的凹凸棒石吸附LAS的影响.结果用2mol·L^-1的盐酸改性的凹凸棒石吸附LAS符合Freundlich吸附等温式,其LAS去除率可达70.69%;反应时间越长,LAS的去除率越高,30min时可达到较高的去除率;改性凹凸棒石在酸性和中性条件下对LAS的吸附作用明显优于碱性条件.结论改性凹凸棒石适合做含阴离子表面活性剂废水处理的吸附剂,经盐酸改性的凹凸棒石吸附效果最好.  相似文献   

17.
萘酚蓝黑褪色分光光度法测定水样中Cr(Ⅵ)   总被引:1,自引:0,他引:1  
在盐酸介质中,依据六价铬离子氧化萘酚蓝黑褪色的原理提出了测定Cr(Ⅵ)的新方法,考察了测定的最佳条件。实验结果表明,该测定方法的最大吸收波长λmax为618nm,Cr(Ⅵ)在1~8μg/10mL范围内符合比尔定律,测定的线性回归方程为A618=0.00882ρ(mg/L)+0.0855l,相关系数为0.99897,表观摩尔吸光系数为3.7×10^4L/(mol·cm)。该法用于水样中的微量Cr(Ⅵ)测定,RSD小于3.0%。  相似文献   

18.
研究了三辛基甲基氯化铵(TOMAC)为载体的大块液膜体系处理含镍(Ⅱ)废水.应用正交实验考察了料液相中金属离子浓度、载体浓度、反萃剂浓度、料液相pH对镍(Ⅱ)迁移的影响.结果表明,镍(Ⅱ)迁移的最优方案为料液相中金属离子浓度为0.03mol/L,载体浓度为6%,反萃剂浓度为0.05mol/L,料液相pH为10.在最优条件下,迁移时间180min,迁移率可达53.92%.因素的影响主次为镍(Ⅱ)浓度〉料液相pH〉载体浓度〉反萃剂浓度.  相似文献   

19.
复合型生物絮凝剂处理低温低浊水影响因素   总被引:3,自引:0,他引:3  
为探讨复合型生物絮凝剂(CBF)在处理低温低浊水源水过程中的影响因素,采用实验室静态试验方法,考察投加量、pH、阳离子絮凝剂等因素对絮凝效果的影响.结果表明:在单独使用CBF时,当投药量范围在5~17.5mg/L以内,CBF可有效地去除水中浊度与高锰酸盐指数(CODMn),最佳投加量为7.5mg/L.CBF在弱碱性条件下絮凝率较高,最佳pH为8.0.在混凝过程中投加阳离子絮凝剂可有效提高CBF对低温低浊水的处理效果并减少投药量.在与聚合氯化铝铁(PAFC)复配使用时,最佳投药量分别为4mg/L和10mg/L,此时浊度去除率为73.0%,CODMn去除率为60.7%.  相似文献   

20.
首先评估了水厂现行工艺对六价铬的去除能力,然后根据饮用水水源地突发性铬污染的特点对水中六价铬的去除进行实验研究。结果表明,针对超标5倍的铬突发污染,使用聚合氯化铝和水玻璃作为混凝剂和助凝剂的水厂现行工艺对六价铬的最高去除率只有54.9%,投加50mg/L的改性凹土可使六价铬浓度降到0.05mg/L以下,出水水质达标,此时的去除率为81.1%。六价铬浓度分别超标10倍、20倍、30倍、40倍时,可采用硫酸亚铁还原/混凝沉淀法处理,硫酸亚铁投加量分别为8 mg/L、12 mg/L、15 mg/L、17mg/L时,可使出水水质达标,去除率分别是92.4%、95.4%、96.8%、97.8%,基本可以满足饮用水水源突发铬污染应急处理的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号