共查询到19条相似文献,搜索用时 46 毫秒
1.
基于时序分析的神经网络短期负荷预测模型研究 总被引:4,自引:1,他引:4
在负荷预测中,历史负荷数据产生的复杂性和许多不确定因素影响的随机性,使观测到的数据既包含线性部分,又包含许多非线性部分,因此所建立的预测模型就必须综合考虑这2方面的因素。目前常用的预测技术很少能综合考虑这两方面的因素.预测精度选不到要求。本文提出了一种时序分析和神经网络结合的预测方法。由于时序模型中不同阶数的自回归移动平均适合线性预测,可利用自回归移动平均模型(ARMA)处理历史负荷数据中的线性部分;而神经网络模型适合非线性预测,可利用人工神经网络(ANN)模型处理历史负荷数据的非线性部分:这样所建立的模型有机地结合了历史负荷中的线性因素和非线性因素.利用不同模型的优势来处理数据的不同部分,使得预测结果更为准确。实证证明。ARMA-ANN组合预测能提高负荷预测的精度。 相似文献
2.
采用一种新型的泛函时间序列方法预测短期电力负荷.建立一种历史日分段负荷与预测分段负荷相似模型的加权平均关系,根据实际观测的分段负荷与参考的分段负荷之间的贴近度.从历史数据中辨识出历史分段负荷,进而通过这种方法捕获需要预测的负荷特性和量化特征。为便于比较说明,将所提泛函时间序列方法应用于某地区的历史日负荷数据,并与近年文献中提出的类似方法进行了比较,证明了本文所提短期负荷预测方法的可行性。 相似文献
3.
4.
准确的负荷预测可以保证电网的安全稳定运行,提高电力系统运行的经济效益,为此,基于灰色理论建立了电力负荷预测模型,并结合陕西省汉中市区电力局某变电站2006年7月的实际负荷讨论了灰色模型在短期负荷预测中的应用,实例计算表明,该模型具有预测精度高、计算过程简单等特点。 相似文献
5.
6.
7.
短期电力负荷预测作为电力系统运行规划的重要依据,对电力系统的安全经济运行有重要意义。提出一种长期和短期时间序列网络(LSTNet)模型对配电台区的短期负荷变化进行预测。该模型用卷积神经网络(CNN)提取负荷数据间的局部依赖关系,用长短时记忆(LSTM)神经网络提取负荷数据长期变化趋势,再融合传统自回归模型解决神经网络对负荷数据极端值的不敏感问题,最后将某一配电台区的电力负荷数据用于网络的训练和预测过程中。通过仿真实验案例发现,相较于以往LSTM、双向长短时记忆神经网络(Bi-LSTM)和CNN-LSTM的预测模型,LSTNet模型在短期负荷预测方面更具优势、预测精度更高。 相似文献
8.
针对短期电力负荷预测因受天气、温度、节假日等多重不确定性因素影响而造成精度低的问题,提出一种基于改进Autoformer模型的短期电力负荷预测模型。改变序列分解预处理的惯例,设计深度模型的内部分解模块,该模块提取模型中隐藏状态的内在复杂时序趋势,使得模型具有复杂时间序列的渐进分解能力;提出Nystrom自注意力机制,该机制利用Nystrom方法来逼近标准的自注意力机制。某地电力负荷预测实验结果表明,所提模型比基于标准Autoformer模型的短期电力负荷预测模型的时间复杂度更低,准确率更高。 相似文献
9.
外部因素对电力负荷具有周期性影响,且这些影响直接反映在电力负荷值上。基于多视角表示学习思想,使用历史电力负荷预测值的不同视角作为外部因素的隐藏表示。通过对历史电力负荷数据进行特征提取,并将电力负荷分为分钟、小时和天三个时间视角,分别采用了适应性的神经网络模型进行特征提取,并引入了一个多视角特征合并模块,融合不同时间尺度上的信息来提高负荷预测准确性。实验证明,所提出的方法在西南某地区的电力负荷数据集上表现出较好的预测性能,与单一时间视角的模型相比,平均绝对误差和均方误差分别降低了12.21%和11.12%。 相似文献
10.
卢武郑人杰赵文彬唐佳圆 《电气传动》2022,(21):74-80
高效精准的短期负荷预测对电力系统安全稳定运行至关重要。提出一种基于经验模态分解(EMD)和门控循环单元(GRU)的组合预测模型。首先选取日期因素、气象因素和历史负荷因素构建输入特征集;再利用EMD算法将随机性强的历史负荷数据分解为有限个特征互异的固有模态函数分量和趋势分量,并和日期因素、气象因素一起作为GRU网络的输入;采用2层GRU循环网络增加网络深度,提升模型学习能力,对各分量数据分别预测并叠加重构输出预测值。以我国某地负荷数据为实际算例,实验结果表明,采用该方法预测误差仅为6.11%,相较于GRU网络模型和BP神经网络模型,预测精度得到巨大提升;相较于EMD-LSTM网络模型,在预测精度相差0.04%的情况下,预测时长缩短25.99%,训练效率得到显著提升。 相似文献
11.
短期负荷序列数据表现出混沌特性,可以使用混沌时序局域方法进行预测。在混沌时序重构相空间中预则中心相点和趋势相点之间的映射关系不是单纯的线性关系,而常用的线性回归预测模型只能逼近线性映射。提出利用径向基函数神经网络(RBFNN)来建立预测模型,可以更加精确逼近预则中心相点和预测相点之间的映射关系,并用欧氏距离和关联系数联合方法选取近邻相点,选取的近邻相点与预测中心相点的关联性更好。利用西北电网的负荷数据所做的实验证明,本文提出的基于RBFNN的局域预测法比线性局域预测法获得了更为满意的预测精度。 相似文献
12.
13.
14.
15.
乔维德 《电力系统保护与控制》2007,35(17):17-21
粒子群优化(PSO)算法是基于群智能的全局优化技术,它通过粒子间的相互作用,对解空间进行智能搜索,从而发现最优解。该文对基本粒子群算法进行改进,并将改进粒子群优化算法与误差反向传播(BP)算法结合起来构成的混合算法用于训练人工神经网络,对短期电力负荷进行预测。实践结果表明:改进PSO-BP算法有效地解决常规BP算法学习网络权值和阈值收敛速度慢、易陷入局部极小等问题,具有较快的收敛速度和较高的预测精度。 相似文献
16.
目前在短期负荷预测模型中,气象因子的应用主要是其日特征值。负荷对气象因子的响应具有实时性的特点,因此,小时气象因子在负荷预测模型中的应用对提高负荷预测精度具有积极作用。通过分析小时温度、湿度、云量、降水、风等气象因子对电力负荷的影响,并与日气象因子的影响进行对比分析,结果表明:小时气象因子对负荷的影响与日气象因子对负荷的影响特征有很大不同,尤其是在天气发生突然变化时,小时气象因子对电力负荷的影响比日气象因子的影响更加显著。建立了基于小时气象因子的神经网络短期负荷预测模型,预测效果较好。针对目前气象部门对小时气象因子的预测能力及其在实际负荷预测中的应用情况,总结了应用中存在的问题并提出改进策略。 相似文献
17.
针对非平稳的家庭短期负荷数据,直接套用预测模型难以挖掘出更深层次的时序特征。提出一种经验模式分解(Empirical Mode Decomposition, EMD)和堆栈式长短期记忆(Stack Long Short-term Memory, SLSTM)的组合算法应用于家庭短期负荷预测。首先分析了SLSTM和EMD原理,提出EMD-SLSTM组合预测模型。将负荷数据通过EMD算法进行分解,然后将分解后的分量数据分别转化为三维数据样本。通过设计SLSTM网络架构及其参数,对归一化的分量数据和原始数据分别进行预测建模及其重构。为显示算法预测性能,实验对比了支持向量回归、人工神经网络、深度神经网络、梯度提升回归等模型在两种情景下的性能,采用MAPE和RMSE性能度量进行验证。实验结果表明EMD-SLSTM更能有效地表达出家庭短期负荷的时序关系,具有更高的预测精度。 相似文献
18.
19.
针对目前电网在负荷预测中所采集到的数据普遍存在着特征维度较少;特征关系不明;有效数据量较少的特点,为了提高电网短期负荷预测精度,本文提出一种基于XGBoost算法的新型负荷预测模型。基于XGBoost算法的负荷预测模型采用CART树作为基学习器,输入预处理后的历史负荷和特征数据,通过构建多个弱学习器逐层训练模型并得到模型,最后向模型输入测试集特征得到最终的预测结果。本文所搭建的负荷预测模型具有避免对数据特征的标准化、处理字段缺失的数据、不用关心特征间是否相互依赖、学习效果好的优点。根据真实电网数据实验结果,基于XGBoost算法的负荷预测平均绝对误差百分比下降到3.46%,比本文所对比的基于BP、GRNN、DBN神经网络的负荷模型预测值精度更高,表明本文所提模型的优越性。 相似文献