首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
超宽带脉冲信号的光学生成方法研究   总被引:1,自引:0,他引:1  
近年来超宽带(UWB)通信技术迅猛发展,在测量、雷达技术、民用和军事无线通信中有着重要的应用,UWB-over-fiber技术已经成为目前研究的热点,其中就包括UWB脉冲信号的产生方法。区别于传统的电子学方法,光子学产生方法不受电子瓶颈制约,可以实现很高的带宽,并且具有抗电磁干扰、重量轻、结构紧凑的优点。通过对比国内外本领域研究成果,讨论及总结了以下三种原理的UWB脉冲信号的光学生成方法:1)相位调制-强度调制转换(PM-IM);2)半导体光放大器(SOA)的非线性效应;3)频谱塑形和色散所致频域-时域映射,然后对各种方案进行了对比分析。  相似文献   

2.
超宽带技术(UWB)在无线通信、雷达、传感等多个领域有着重要的应用,由低损耗、高带宽的光纤传输的UWB光传输系统,即UWB over fiber,是目前国内外研究的热点课题,如何在光域中生成UWB信号是该系统的关键技术之一。为此提出了一种利用半导体光放大器(SOA)的交叉增益调制(XGM)效应和布拉格光纤光栅(FBG)...  相似文献   

3.
文章提出了两种利用SOA(半导体光放大器)的XGM(交叉增益调制)和FBG(光纤布拉格光栅)光学生成对称型UWB(超宽带)信号的新方法.分析了该方法的工作原理并进行了仿真实验,分别得到了符合FCC(美国联邦通信委员会)标准的中心频率为5.35 GHz、相对带宽为114%以及中心频率为4.7 GHz、相对带宽为132%的...  相似文献   

4.
提出了一种利用SOA(半导体光放大器)的增益饱和效应及XGM(交叉增益调制)效应同时产生二阶及三阶UWB(超宽带)信号的方案,分析了其工作原理,并采用光子模拟软件进行了仿真实验,得到了中心频率为6GHz、相对带宽为143%的二阶信号和中心频率为8GHz、相对带宽为120%的三阶信号,两者均符合FCC(美国联邦通信委员会)对UWB信号的规定。同时,还分析了输入脉冲信号宽度、探测光及泵浦光功率对生成的UWB信号的影响。  相似文献   

5.
提出了一种利用SOA(半导体光放大器)的增益饱和效应及XGM(交叉增益调制)效应同时产生二阶及三阶UWB(超宽带)信号的方案,分析了其工作原理,并采用光子模拟软件进行了仿真实验,得到了中心频率为6GHz、相对带宽为143%的二阶信号和中心频率为8GHz、相对带宽为120%的三阶信号,两者均符合FCC(美国联邦通信委员会)对UWB信号的规定。同时,还分析了输入脉冲信号宽度、探测光及泵浦光功率对生成的UWB信号的影响。  相似文献   

6.
利用非线性光学环镜(NOLM),提出了一种基于半导体光放大器(SOA)的交叉相位调制(XPM)效应生成超宽带(UWB)信号的方法,设计了系统结构,并进行了仿真实验,得到了中心频率约为6.7GHz、相对带宽约为161%的UWB信号,该信号符合美国联邦通信委员会(FCC)标准,从而验证了该方法的可行性。另外,所生成的UWB信号的中心频率及带宽还具有可调性。  相似文献   

7.
光纤传输超宽带信号(UWB over fiber)的提出解决了UWB传输距离短的问题,成为国内外研究的热点课题,如何在光域中生成UWB是该系统的关键技术之一。对称形UWB(doublet)与常用的单周期高斯脉冲信号(monocycle)相比,在低频部分的功率谱密度较低,在UWB系统中有更好的性能。为此提出了利用半导体光放大器(SOA)的增益饱和效应生成对称形UWB信号的方法,并进行了仿真实验,得到了符合美国联邦通信委员会(FCC)标准的中心频率为8.3GHz,相对带宽约为142%的对称形UWB信号,验证了该方法的可行性。  相似文献   

8.
利用光反馈半导体激光器产生超宽带混沌脉冲信号   总被引:1,自引:4,他引:1  
提出了一种基于光反馈半导体激光器的混沌特性产生超宽带(UWB)信号的新方法。一个商用的通信波段半导体激光器在外腔光反馈下实现混沌振荡,输出连续波混沌激光,经由一个电吸收调制器后,被调制为一系列混沌脉冲信号。该混沌脉冲信号的频谱特性可通过调节半导体激光器的偏置电流和反馈强度进行控制。实验分别获得了中心频率为4.0 GHz、相对带宽为181%和214%的混沌脉冲UWB信号。进一步数值仿真了偏置电流和反馈系数对混沌脉冲UWB信号频谱特性的影响,实验结果与模拟验证相符。该方法实验装置简单,UWB信号频谱特性易控,可用作未来UWB光纤无线通信系统的光生微波信号发生装置。  相似文献   

9.
陈鑫  陈新桥  杨晓雪  王瑞东  张震 《半导体光电》2013,34(2):277-281,286
提出了一种基于色散位移光纤(DSF)的交叉相位调制(XPM)效应的超宽带(UWB)光学生成方法。该方法首先利用DSF的XPM效应实现高功率的高斯泵浦光对低功率的直流探测光的交叉相位调制,然后利用光纤布拉格光栅(FBG)对探测光进行鉴频,实现相位调制到强度调制的转换,从而获得单周期UWB信号。利用光子仿真软件对方案进行了仿真实验,得到了中心频率分别为7GHz和6.95GHz、相对带宽分别为143%和145%的UWB信号,验证了所提方法的可行性。同时,研究了输入信号脉冲宽度、FBG的反射率、鉴频器的类型对产生的单周期UWB脉冲信号波形和频谱的影响。仿真实验的结果表明,该方案对输入信号脉冲宽度不是过宽的情况下具有良好的容忍度,光学高斯带通滤波器、波分复用器和FBG等光滤波器均可作为鉴频器,采用FBG优点是可通过改变反射率灵活地调整产生的UWB脉冲信号的波形。  相似文献   

10.
采用仿真方法研究在光纤传输过程中产生并分发超宽带脉冲信号.对系统频响特性的数值分析获知频率响应在低频段表现出带通滤波器特性,且中心波长越短,低频带宽越大.仿真12.5 Gbit/s伪随机序列传输特性表明,高斯脉冲通过系统后,时域上脉冲信号接近于FCC(美国联邦通信认证)的超宽带脉冲波形模板,频域上的信号频谱接近于FCC的频谱规范.  相似文献   

11.
超宽带信号(UWB)的光学生成技术是光载超宽带通信系统(UWB-over-fiber)的关键技术,半导体光放大器(SOA)的非线性特征在全光信号处理中有着广泛的应用。提出基于SOA的交叉相位调制(XPM)效应的UWB的光学生成方法。该方法首先利用SOA的XPM实现高功率的高斯泵浦光和低功率的直流探测光的XPM,然后利用光学滤波器对探测光进行鉴频,实现相位调制到强度调制的转换,从而获得单周期UWB信号。提出了采用光带通滤波器和波分复用器对探测光进行鉴频的两种方法,获得中心频率分别为5.15GHz和5.05GHz,相对带宽分别为150%和149%的UWB信号,符合FCC标准。  相似文献   

12.
提出了两种利用半导体光放大器(SOA)不同的增益效应产生超宽带(UWB)信号的方法。一种方法是利用两个光源和SOA的交叉增益调制(XGM)效应产生UWB,另一种方法是利用一个光源和SOA的增益饱和效应产生UWB信号。分析了这两种方法的工作原理,进行了相关的仿真实验,分别得到了符合美国联邦通信委员会(FCC)标准的UWB...  相似文献   

13.
偏振模色散(PMD)已成为高速光纤通信系统发展的严重障碍。文章介绍了偏振模色散的概念,对现有的主要偏振模色散的补偿方法进行了分析和比较。指出用保偏光纤(PMF)和偏振控制器(PC)来补偿PMD是目前比较可行的方法,而用光子晶体光纤(PCF)进行PMD补偿的方法也在进一步研究之中。  相似文献   

14.
基于半导体光放大器( SOA)中交叉增益调制(XGM)效应,同时全光实现超宽带(UWB)正相、反相高斯单边信号(monocycle).输出的monocycle脉冲只包含一个波长分量,在光纤传输过程中monocycle上下脉冲不会引入时间差.利用光通信系统软件OptiSystem对方案进行仿真,分析了光源波长对输出monocycle脉冲的影响,结果表明输出的monocycle脉冲具有对光源变化不敏感的优点.  相似文献   

15.
提出了一种新的超宽带(UWB)脉冲产生的方法,并对其产生的数学原理进行了分析和实验验证。经过高斯信号调制的偏振控制器(PC)可以产生两个相位互补的相位调制信号,先通过PC调节两个正交的相位调制信号的静态相移,再经过偏振分束器(DBS)检偏后可以得到两路相位互补的高斯信号或二阶高斯信号,最后将这两路信号延时然后再经过偏振合路器(PBC)就可以分别得到一阶或三阶高斯信号。由于这3种脉冲的产生方式不同,频带宽度不同,在光纤中传输时对色散的容忍度也不一样,因此仿真分析了色散对这3种UWB信号传输特性的影响,得出了三阶高斯信号最适合UWB传输。  相似文献   

16.
超宽带(ultra-wide band,UWB)技术的迅猛发展使UWB设备与现存无线通信系统间兼容性问题的研究越来越重要,UWB信号对其带内及带外不同无线通信系统存在着不同程度的干扰作用。在对战术空中导航系统(Tactical Air Navigation,TACAN)的信号特征进行分析的基础上,结合UWB路径损耗模型,从平均功率的角度讨论了脉冲UWB信号对TACAN系统的干扰情况,为进一步的研究提供了借鉴与参考。  相似文献   

17.
提出了一种改进型的基于前向自适应方式的TR接收机结构,并对其性能进行了理论论证和仿真分析.证明该接收机在特定的信道模型下有着可以与完全Rake相差不大的BER性能,硬件实现复杂度低,而且其特殊的信号结构设计特别适合用于脉冲同步的导频信号的接收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号