共查询到19条相似文献,搜索用时 78 毫秒
1.
目的探索枪钻钻削Ti6Al4V钛合金刀具的磨损特性,探讨刀具磨损对钻削轴向力的影响。方法设计深孔钻削试验,每孔钻深575 mm,每钻削一个孔,使用共聚焦显微镜对刀具磨损特性及磨损值进行分析,并使用测力仪对轴向力信号进行提取。通过显微镜观测,对刀具的磨损形式进行分析,结合刀具实际磨损情况,给出刀具的磨损等级。通过对轴向力的分析,研究刀具磨损量对于钻削轴向力的影响。结果由刀具磨损曲线可知,在整个钻削试验过程中,磨损过程可分为三个阶段:初期磨损、正常磨损、剧烈磨损。外刃第一后刀面的平均磨损量及最大磨损量在磨损的三个阶段中始终大于前刀面。当钻削深度达到11 m以后,刀具整体磨损速率上升,进入剧烈磨损阶段;当钻削深度达到14 m以后,外刃第一后刀面最大磨损量急剧增加。轴向力变化曲线呈现初期磨损阶段基本保持不变,正常磨损阶段平稳增加,剧烈磨损阶段趋于稳定的变化趋势。结论刀具的主要磨损形式为前刀面和外刃第一后刀面的表面烧灼及粘结磨损,外刃和侧刃的破损及崩刃,导向面的大面积剥落继而形成凹坑,三种情况共同导致刀具失效。刀具剧烈磨损阶段,刀具磨损速率迅速增加,切削力较大,因此实际加工过程中应在剧烈磨损阶段之前对刀具进行重磨。 相似文献
2.
为了研究SiC/SiC复合材料的加工性和在钻削过程中的切削力、刀具磨损和孔质量,使用整体硬质合金钻头和金刚石涂层的硬质合金钻头对SiC/SiC复合材料进行钻削试验,并设计正交试验对刀具的几何角度参数和钻削过程中的的切削力的关系进行分析,加工后观察刀具磨损和孔出口质量.结果表明:在低转速低进给条件下,金刚石涂层的硬质合金... 相似文献
3.
针对钻削加工时难以直接观察刀具磨损状态的问题,基于声发射采集系统设计了超声轴向振动钻削刀具磨损状态监测装置,并在7075铝板上进行超声振动钻削试验。分析刀具磨损状态对声发射信号RMS值的影响,并通过小波分解技术对比分析刀具在不同磨损状态下的声发射信号变化规律;根据声发射信号对刀具磨损状态进行实时监测。试验结果表明:声发射信号的RMS值与刀具的磨损程度呈正相关;通过小波分解可知,随着刀具磨损的增加,信号的能量逐渐由低频段向高频段转移,可以通过监测声发射信号RMS值与能量的变化实现刀具磨损状态的有效识别。 相似文献
4.
数控铣削加工圆弧轮廓时,由于圆弧半径尺寸精度处理不当,会造成圆弧尺寸精度误差甚至是形状偏差.从数控系统控制原理上分析了产生这种偏差的原因,给出了保证圆弧加工尺寸精度及修正形状偏差的措施. 相似文献
5.
本研究通过单因素试验方法,开展钻削碳纤维复合材料的试验研究。采用KISTALER公司9265B型测力仪测钻削轴向力,并采用撕裂因子评价孔形貌质量,对钻削碳纤维复合材料的过程进行分析,研究不同钻削参数对钻削碳纤维复合材料的轴向力和孔加工质量的影响。试验结果表明:随着进给量的增大,轴向力逐渐增大,孔退钻口撕裂因子呈现先减小再增大的趋势,孔进钻口撕裂因子则呈现逐步小幅增大的趋势。随着转速的增大,轴向力逐步小幅减小,孔退钻口撕裂因子随之减小。并且,进给量对轴向力和孔加工质量的影响远大于转速对轴向力和孔加工质量的影响。在相同条件下,孔进钻口的毛刺、撕裂等缺陷明显少于退钻口的缺陷。 相似文献
6.
7.
为提高低碳钢的表面性能,以Ni基合金为原材料,添加一定量的B4C粉末作增强相,钎涂于低碳钢表面,研究了B4C添加量对涂层性能的影响.结果表明:控制合理的工艺参数,可以获得表面平整、光滑,与基体呈冶金结合的涂层;随着B4C添加量的增加,涂层的硬度及耐磨性也逐渐增加,但添加量增加到一定值后,涂层与基体的熔合效果不佳,出现气孔等缺陷,硬度及耐磨性反而下降. 相似文献
8.
钎焊金刚石磨粒钻适合钻削碳纤维增强碳化硅陶瓷基复合材料孔,但大量切屑会对孔的钻削过程产生不利影响。为此,针对切屑排出过程,分析切屑形貌,研究钻削时切屑对轴向钻削力、孔加工质量、钻头磨损的影响。结果表明:切屑对轴向钻削力有影响,尤其钻削深孔时影响显著。切屑对孔进口的加工质量几乎没有影响,只表现为孔进口处的轻微崩边;切屑对孔出口的加工质量影响显著,可引起严重的纤维断裂、撕裂缺陷以及基体的大区域脱落。同时,切屑加剧钻头磨损,使钻头不仅出现崩刃、微裂纹等轻微磨损,而且还产生基体剥落、金刚石剥落等严重磨损行为。 相似文献
9.
通过中温热压法(热压温度在固液相线之间)制备出不同碳化硼含量的铝基复合材料,并轧制成板.经T6热处理后对B4C/Al复合材料进行微观形貌、力学性能分析.结果表明,碳化硼颗粒分布均匀,有较少的微气孔缺陷,随着碳化硼含量的增加,增强颗粒尺寸明显变小.B4C/Al复合材料的抗拉强度、屈服强度和断后伸长率随着碳化硼含量的增加而减小,与6061铝合金相比降低幅度较大,硬度随着碳化硼含量的增加而提高,靠近颗粒处硬度显著提高.B4C/Al复合材料的断裂方式是脆性断裂. 相似文献
10.
采用光学高温计对在不同钻削条件下的B4C金属基复合材料的钻削温度进行非接触测量。研究了颗粒含量、切削速度、进给速率和刀具材料对最高钻削温度的影响。基于最高切削温度和刀具磨损对钻削参数进行优化。结果表明:对最高切削温度影响最大的因素主要为颗粒含量、进给速率以及切削速率与颗粒含量间的相互作用。切削速率与切削材料对最高切削温度的影响相对较小。当颗粒含量较小,切削速度较低,进给速率较高,利用硬质合金刀具时,切削温度较低。采用优化后的钻削参数可以获得较低的切削温度和较小的刀具磨损。 相似文献
11.
12.
利用金属诱发无压浸渗技术制备的B4C/Mg复合材料为实验材料,研究该材料的磨损行为与磨损机制。在销盘式实验装置上对施加不同载荷(20、40、60和80 N)以及磨损速率为250 r/min实验条件下的磨损行为进行评价。结果表明:B4C/Mg 复合材料在所施加载荷下均比纯 Mg 基体表现出更优异的抗磨性能。作为诱发浸渗剂的金属Ti颗粒,其含量对B4C/Mg复合材料的磨损性能具有一定影响。纯Mg基体的主要磨损机制是磨粒磨损;而对于B4C/Mg复合材料,当施加载荷较低时,主要磨损机制为粘着和层离;当施加载荷较高时,其磨损机制为加热软化熔化或塑性变形。 相似文献
13.
运用5kWcO2连续激光器在低碳钢表面激光熔覆Co基合金涂层(C065)及Co基合金中添加20%B4C(体积分数)的复合涂层(B4C/Co),研究了B4C对熔覆层组织、显微硬度及耐磨性的影响。结果表明,两种熔覆涂层均为树状枝晶生长的亚共晶组织。C055涂层主要由大量初生枝晶γ固溶体及其间的共晶组织1与(Cr,Fe)7C3组成;B4C/Co涂层主要由γ-Co,Cr7C3,Cr23c6,CrB2和Fe23(C,B)6组成,添加的B4C粒子在熔覆过程中全部熔解,但B4C/Co涂层组织与C055相比明显细化。B4C/Co涂层的显微硬度及耐磨性比Co65涂层都明显提高,并分析了涂层的强化机理。 相似文献
14.
采用粉末冶金的方法制备了30vol%B_4C/6061Al中子吸收材料板材。通过搅拌摩擦焊(FSW)的方法对4 mm厚30vo1%B_4C/6061A1中子吸收材料板材进行对接焊接,获得了表面成形良好的焊缝。采用纳米压痕法对FSW焊接接头的焊核(WZ)、热力影响区(TMAZ)、热影响区(HAZ)和母材(BM)4个区域中的微区力学性能进行研究,对焊接接头的拉伸性能进行了测试。运用扫描电镜对压痕的微观形貌和拉伸断口进行表征。结果表明:在同一区域中,随着距颗粒/基体界面距离d(d11μm)的增加,微区的硬度和弹性模量总体呈现降低趋势。在微区数值均值化后,不同区域的硬度和弹性模量由高到低为WZ、TMAZ、BM和HAZ,压入功恢复率在WZ、TMAZ、HAZ和BM依次为28.10%、25.14%、31.76%和29.30%。在焊接接头不同区域出现性能差别的原因是由于在FSW过程中不同区域的塑性变形程度和热循环作用不同导致的,FSW接头强度可达母材的85.7%,断裂部位在HAZ区。 相似文献
15.
利用激光熔覆在Ti-6Al-4V合金表面制备了TiAlSi+xB4C涂层,分析比较不同B4C含量对于涂层显微组织、显微硬度和耐磨性能的影响。结果表明:B4C含量不同,涂层中的物相种类差别不大;涂层的微观形貌由颗粒状晶、层状晶、胞状晶和短棒状晶组成;不同B4C含量涂层的显微硬度分布趋势大致相同,与基材相比均有明显的提高,随着B4C含量的增高,整体上涂层显微硬度逐渐增大,当B4C的含量为8%时,涂层的显微硬度最高,达到1216 HV0.1,约为基体的4.2倍;而当B4C含量过高时,涂层硬度降低,且涂层中出现微裂纹。通过磨损试验表明,不同B4C含量的涂层耐磨损性能均明显的优于Ti-6Al-4V合金基体,含8%B4C的涂层磨损量最小。熔覆不同含量B4C的涂层明显改善了基体Ti-6Al-4V合金的表面性能。 相似文献
16.
17.
热压B4C—C陶瓷复合材料的组织与性能 总被引:3,自引:0,他引:3
研究了添加游离碳含量对碳化物粉末的热压烧结行为及对B4C-C陶瓷的强度和断裂韧性的影响,用X射线衍射,扫描电镜对烧结的成分,显微结构和断裂行为进行了分析讨论,结果表明,在一定的热压条件下,添加7%C(质量分数)的碳化颗烧结体的相对密度可高达98.5%,断裂韧性为7.65MPa.m^1/2弯曲强度仍能达460MPa通过成分及断口形貌观察,由于晶界C对晶界的弱化及晶界的分层诱韧化作用使裂纹偏转,钝化可 相似文献
18.
《Journal of Materials Processing Technology》2014,214(3):556-564
Electrochemical drilling (ECD) is a promising and low-cost process for yielding multiple holes simultaneously in difficult-to-machine materials. In this process, the hole exit accuracy is very sensitive to the electrode feeding depth. In practice, excessive electrode feeding is necessary to ensure that all holes are drilled through simultaneously when there is an error in thickness of the workpiece plate. This results in stray removal at the hole exit and an etched and pitted surface. In the modification of ECD described here, a potential difference is introduced via an insoluble platinum auxiliary electrode that is attached beneath a dielectric perforated plate and arranged opposite to the hole exits to diminish the damage from the stray current and thereby improve the tolerance of the exit accuracy to excessive electrode feeding. Simulation results indicate that an appropriate value of the potential difference concentrates the current at the tool tip and may reverse the current direction on the workpiece surface. Experiments verify that this approach is effective in obtaining holes with good exit accuracy in the case of excessive electrode feeding. Furthermore, it is confirmed that this method is capable of drilling multiple holes with remarkably enhanced exit accuracy and uniformity. 相似文献
19.
T. Valente C. Bartuli M. Sebastiani A. Loreto 《Journal of Thermal Spray Technology》2005,14(4):462-470
The experimental measurement of residual stresses originating within thick coatings deposited by thermal spray on solid substrates
plays a role of fundamental relevance in the preliminary stages of coating design and process parameters optimization. The
hole-drilling method is a versatile and widely used technique for the experimental determination of residual stress in the
most superficial layers of a solid body. The consolidated procedure, however, can only be implemented for metallic bulk materials
or for homogeneous, linear elastic, and isotropic materials. The main objective of the present investigation was to adapt
the experimental method to the measurement of stress fields built up in ceramic coatings/metallic bonding layers structures
manufactured by plasma spray deposition. A finite element calculation procedure was implemented to identify the calibration
coefficients necessary to take into account the elastic modulus discontinuities that characterize the layered structure through
its thickness. Experimental adjustments were then proposed to overcome problems related to the low thermal conductivity of
the coatings. The number of calculation steps and experimental drilling steps were finally optimized. 相似文献