首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The corrosion behavior of mild steel and mild steel covered by electrochemically deposited (a) polyaniline (PANI) film, (b) epoxy coating and (c) PANI/epoxy coating system in 0.1 M sulfuric acid solution were investigated by electrochemical impedance spectroscopy (EIS). Electrochemical deposition of PANI film was performed from aqueous solution of 0.5 M sodium benzoate and 0.1 M aniline at constant current density of 1.5 mA cm−2. Epoxy coatings on mild steel and mild steel modified by PANI film were deposited at constant voltage. It was shown that thin PANI film had provided good corrosion protection of mild steel in 0.1 M sulfuric acid solution, and could be used for modification of mild steel prior to epoxy coating deposition. The increased corrosion protection of mild steel by PANI/epoxy coating system in the same solution was obtained.  相似文献   

2.
Electroactive conducting polymer composite coatings of polyaniline (PANI) are electrosynthesized on styrene–butadiene rubber (SBR) coated stainless steel electrode by potentiostatic method using aqueous H2SO4 as supporting electrolyte. The protective behaviour of these coatings in different corrosion media (3.5% NaCl and 0.5 M HCl) is investigated using Tafel polarization curves, open circuit potential measurements and electrochemical impedance spectroscopy. The results reveal that SBR/PANI composite coating is much better in corrosion protection than simple PANI coating. The corrosion potential of composite films shifts to more noble values indicating that SBR/PANI composite coating act as an effective corrosion protective layer.  相似文献   

3.
Poly(N-ethylaniline) (PNEA) coatings were grown by cyclic voltammetry technique on copper from 0.1 M N-ethylaniline (NEA) in 0.3 M oxalic acid solution. The optimum conditions (e.g. upper potential limit, scan rate and cycle number) effect on corrosion performance of synthesized PNEA films were determined in order to obtain best protection results against corrosion. The electrodeposited coatings were characterized by cyclic voltammetry (CV), Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR) spectroscopy and scanning electron microscopy (SEM). Redox parameters were found after electrochemical tests and results of stability tests of these films impart an electroactive behavior that is composed of both diffusion control and thin film behavior. In addition, corrosion performance of PNEA coatings were investigated in 0.1 M H2SO4 by Tafel extrapolation and electrochemical impedance spectroscopy (EIS) techniques.  相似文献   

4.
Homopolymer and bilayer coatings of poly(N-methylaniline) (PNMA) and polypyrrole-dodecylsulfate (PPy-DS) have been electropolymerized on a mild steel (MS) surface by the potentiodynamic method in aqueous oxalic acid solutions. In order to include dodecylsulfate ion as dopant in the polypyrrole, sodium dodecylsulfate was also added to the polymerization solution of pyrrole. Characterization of coatings was carried out by the cyclic voltammetry, Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM). Corrosion behavior of the polymer coated MS electrodes was investigated in highly aggressive 0.5 M HCl solution by the Tafel test and electrochemical impedance spectroscopy (EIS) techniques. Corrosion test revealed that among the protective coatings obtained, the PNMA/PPy-DS bilayer exhibited the best corrosion resistance at all immersion times.  相似文献   

5.
Poly(N-ethylaniline) (PNEA) coatings on mild steel have been electrodeposited from 0.1 to 0.5 M aqueous oxalic acid solutions containing 0.1 M N-ethylaniline (NEA) using potentiodynamic synthesis technique. The effect of oxalic acid concentration on the corrosion behavior of PNEA coated mild steel surfaces were investigated by DC polarization and electrochemical impedance spectroscopy (EIS) techniques in 0.1 M HCl and 0.05 M H2SO4 solutions. Corrosion test results showed that corrosion resistance of PNEA coatings decreases with increasing concentrations of oxalic acid in polymerization solution. Decreasing acidity of the polymerization solution causes more effective protection against corrosion in aqueous acidic corrosive medium.  相似文献   

6.
To investigate the role of polyaniline (PANI) in the corrosion protection of stainless steel (SS) in oxygen-deficient acidic solution, a separate doped PANI film electrode on a glass substrate was prepared and the test solution (1 M H2SO4) was purged with high-purity N2 until dissolved oxygen level decreased more than two orders of magnitude. In this deaerated 1 M H2SO4 solution, the galvanic coupling interaction between the separate PANI film electrode and 410 SS was studied. Results reveal that the separate PANI film can passivate the 410 SS steadily for a long period of time. A variety of experimental methods including potentiodynamic measurement, potentiostatic (current-time) examination and X-ray photoelectron spectroscopy (XPS) are used to explore the mechanism by which the separate PANI film passivated the galvanic coupling SS in the deaerated sulfuric solution. These studies show that passivation is achieved because PANI film provides a large critical current at the early stage of coupling and a persistent passive current by its electrochemical dedoping/re-doping equilibrium activity with the acidic environment at the subsequent stage of coupling.  相似文献   

7.
Polyaniline (PANI) was synthesized by reaction in an aqueous solution of ammonium peroxodisulfate and phosphoric acid. PANI was characterized by means of scanning electron microscopy and its physical–chemical properties were determined. Simultaneously with the synthesized PANI epoxy-ester coatings containing 3, 5, 10, 15, 20 and 24 vol.% of PANI as a corrosion inhibitor were formulated. The coatings were tested for their mechanical properties, film hardness and corrosion resistance. The testing of the anticorrosion efficiency of PANI as corrosion inhibitor was based on accelerated corrosion tests: in condensed water, NaCl mist, and condensing water and SO2. The prepared PANI displayed inhibition effects in corrosion reactions progressing on a steel base under the organic coating. The synthesized PANI provides good anticorrosion efficiency in an epoxy-ester coating. The studied system does not contain any heavy metals harmful to the environment.  相似文献   

8.
For the first time, electrosynthesis of polybithiophene (PBTh) and its bilayers with polyaniline (PAni) coatings on stainless steel (SS) in aqueous oxalic acid solutions containing monomer and sodium dodecyl sulfate (SDS) was carried out by potentiodynamic synthesis technique. Smooth and adherent films were obtained on the steel surfaces. Homopolymers and bilayers were characterized by cyclic voltammetry, FTIR, UV–vis spectroscopies and SEM. Homopolymers were also characterized by means of conductivity and the number average molecular weight measurements. The effects of the scanning potential limits on electrosynthesis of PBTh and its bilayer coatings were investigated. The test for corrosion protection of the polymer coated and uncoated SS substrates were performed in highly aggressive 0.5 M NaCl and 0.5 M HCl solutions by linear potentiodynamic polarization and Tafel test technique, respectively. Corrosion test revealed that among the protective coatings obtained, PBTh as homopolymer and PAni/PBTh as bilayer exhibited the most effective anticorrosive properties. According to linear potendynamic polarization test, the dissolution current of these coatings at 1.6 V decreased to 99.8% and 99.6% in NaCl solution, respectively, when compared to that of uncoated SS surfaces.  相似文献   

9.
Tung oil is used as a catalyst-free repair agent. Tung oil-loaded polyurethane (PU) microcapsules are prepared by interfacial polymerization in a SiO2-stabilized Pickering emulsion system, polyaniline (PANI) is deposited in situ on the PU microcapsule surface, and tung oil-loaded PU/PANI double-layer shell microcapsules are obtained. Synthesized PU/PANI microcapsules showed the characteristic dark-green color of conductive PANI. The average particle size is 31.1 ± 8.1 µm and the core content is 45.1 ± 4.3 wt%. The microcapsules have a good thermal stability, and the chemical structure of the PU/PANI wall and tung oil core is confirmed by Fourier transform infrared analysis. Self-healing anti-corrosion coatings are prepared by adding 10 wt% microcapsules into epoxy resin. The corrosion resistance properties of the self-healing coating are evaluated by immersing scratched coatings in 10 wt% NaCl solution for 15 days. The self-healing coating with 10 wt% tung oil-loaded PU/PANI microcapsules have the best anti-corrosion property, and slight corrosion do not occur until 15 days after immersion in salt solution. The self-healing and anti-corrosion mechanism are revealed. The tung oil core and the PANI wall of microcapsules contributed synergistically to the excellent self-healing and anti-corrosion properties of the coating through the formation of self-healing films and passivation layers.  相似文献   

10.
Poly(o-anisidine) (POA) and polyaniline (PANI) coatings were synthesized on platinum (Pt) surface and stainless steel (SS) in monomer containing 0.50 M sulphamic acid (SA) solution by means of cyclic voltammetry (CV) technique. Meanwhile, poly(o-anisidine) film was also deposited with a different scan rate on SS electrode. The behaviour of PANI and POA films obtained on stainless steel examined by CV was different from the one obtained for PANI and POA on Pt electrode. The corrosion performances of PANI and POA coatings in 3.5% NaCl solution were investigated with anodic polarization technique and electrochemical impedance spectroscopy (EIS). EIS measurements verified the effect of monomers and that of scan rate on corrosion inhibition of coatings on SS electrode. The results showed that POA film synthesized at low scan rate exhibited an effective anticorrosive property on SS electrode. POA synthesized at low scan rate and PANI coatings provided a remarkable anodic protection to SS substrate for longer exposure time than the one observed for POA coating produced at high scan rate as well as that of bare SS electrode.  相似文献   

11.
Three types of composite supercapacitor electrodes were prepared; electroactive polyaniline (PANI), PANI/multi-walled carbon nanotube (CNT), and PANI/CNT/RuO2. Specifically, the PANI and PANI/CNT were prepared by polymerization, and PANI/CNT/RuO2 was prepared by electrochemical deposition of RuO2 on the PANI/CNT matrix. Cyclic voltammetry between −0.2 and 0.8 V (vs. Ag/AgCl) at various scan rates was performed to investigate the supercapacitive properties in an electrolyte solution of 1.0 M H2SO4. The PANI/CNT/RuO2 electrode showed the highest specific capacitance at all scan rates (e.g., 441 and 392 F g−1 at 100 and 1,000 mV s−1, respectively). In contrast, the PANI/CNT electrode demonstrated the best capacitance retention (66%) after 104 cycles. Additional analysis including morphology and complex impedance spectroscopy suggested that with small loading of RuO2, an increase in capacitance was observed, but dissolution and/or detachment of RuO2 species from the electrode might occur during cycling to reduce the cycle performance.  相似文献   

12.
This work describes the study of the ionic transport in polyaniline (PANI) and polypyrrole (PPY) modified electrodes polymerized in presence of nickel tetrasulfonated phthalocyanine (NiTsPc). Elemental analysis and infrared spectroscopy were used to characterize the resulting composite films. The impact of the phthalocyanine incorporation was evaluated by electrochemical quartz crystal microbalance under potentiodynamic conditions. Results have shown that the presence of the negative charge (SO3 groups) modifies the nature of the ‘ionic exchange’ membranes, during the cycling. In the case of PANI/NiTsPc modified electrodes, the electroneutralization is mainly achieved by the participation of protons both in HCl and in camphorsulfonic acid (HCSA) electrolyte solutions. For PPY/NiTsPc composites, the cation contribution is dominant in the case of LiCl and NaCl solutions and the anion transport becomes important when CsCl and BaCl2 solutions are used.  相似文献   

13.
In this paper, the results on the electrochemical impedance spectroscopy and corrosion properties of electrodeposited nanostructured Al2O3-Ni composite coatings are presented. The nanocomposite coatings were obtained by codeposition of alumina nanoparticles (13 nm) with nickel during plating process. The coating thickness was 50 μm on steel support and an average of nano Al2O3 particles inside of coatings at 15 vol.% was present. The structure of the coatings was investigated by scanning electron microscopy (SEM). It has been found that the codeposition of Al2O3 particles with nickel disturbs the nickel coating's regular surface structure. The electrochemical behavior of the coatings in the corrosive solutions was investigated by polarization potentiodynamic and electrochemical impedance spectroscopy methods. As electrochemical test solutions 0.5 M sodium chloride and 0.5 M potassium sulphate were used in a three electrode open cell. The corrosion potential is shifted to more negative values for nanostructured coatings in 0.5 M sodium chloride. The polarization resistance in 0.5 M sodium chloride decreases in 24 h, but after that increases slowly. In 0.5 M potassium sulphate solution the polarization resistance decreases after 2 h and after 30 h of immersion the polarization resistance is higher than that of the beginning value. The corrosion rate calculated by polarization potentiodynamic curves obtained after 30 min from immersion in solution is smaller for nanostructured coatings in 0.5 M potassium sulphate (4.74 μm/year) and a little bit bigger in 0.5 M sodium chloride (5.03 μm/year).  相似文献   

14.
Polyaniline/zinc composites and nanocomposites were prepared using solution mixing method. Zinc (Zn) particles with an average particle size of 60 μm and zinc nanoparticles with an average particle size of 35 nm were used as fillers in polyaniline (PANI) matrix. Films and coatings of PANI/Zn composites and nanocomposites were prepared by the solution casting method. Electrical conductivity and anticorrosion properties of PANI/Zn composite and nanocomposite films and coatings with different zinc loadings were evaluated. According to the results, electrical conductivity and anticorrosion performances of both PANI/Zn composites and nanocomposites were increased by increasing the zinc loading. Also results showed that the PANI/Zn nanocomposite films and coatings have better electrical conductivity and corrosion protection effect on iron coupons compared to that of PANI/Zn composite.  相似文献   

15.
Poly(N-ethylaniline) (PNEA) coatings on mild steel have been electrodeposited from 0.1 to 0.5 M aqueous oxalic acid solutions containing 0.1 M N-ethylaniline (NEA) using potentiodynamic synthesis technique. The effect of oxalic acid concentration on the corrosion behavior of PNEA coated mild steel surfaces were investigated by DC polarization and electrochemical impedance spectroscopy (EIS) techniques in 0.1 M HCl and 0.05 M H2SO4 solutions. Corrosion test results showed that corrosion resistance of PNEA coatings decreases with increasing concentrations of oxalic acid in polymerization solution. Decreasing acidity of the polymerization solution causes more effective protection against corrosion in aqueous acidic corrosive medium.  相似文献   

16.
Poly(pyrrole-co-N-methyl pyrrole) copolymer and poly(pyrrole)/poly(N-methyl pyrrole) bilayer composites were electrochemically synthesized on copper by cyclic voltammetry from aqueous solution of 0.3 M oxalic acid and 0.1 M monomer. Synthesis of copolymers were performed with different monomer feed ratios (pyrrole:N-methyl pyrrole, 8:2, 6:4, 5:5, 4:6 and 2:8) and in order to determine the copolymer, which has the best corrosion performance, anodic polarization was applied to copolymer coated samples. It was found that the performance of coatings was strongly dependent to the monomer feed ratio and the copolymer synthesized with 8:2 concentration ratio showed the most protective property compared to others. Bilayer of poly(pyrrole)/poly(N-methyl pyrrole) was also synthesized to compare the anticorrosive properties. Polymer films were characterized by ATR-FTIR spectroscopy and SEM techniques. Corrosion behavior of polymer composites was investigated in 0.1 M H2SO4 solution by anodic polarization and electrochemical impedance spectroscopy. Different approaches such as phase angle at high frequency and areas under Bode plots were used to evaluate corrosion performances of the coatings. Copolymer and bilayer coatings were found to have higher protection effect than single polypyrrole coatings. Moreover, bilayer coating exhibited better protection efficiency than copolymer coating against corrosion of copper when the obtained results were compared.  相似文献   

17.
Electrochemical synthesis of polypyrrole (PPy) and top coat of poly(5-amino-1-naphthol) (PANAP) on PPy films from oxalic acid solution was achieved on mild steel (MS) by cyclic voltammetry technique. The morphology and the structure of the films were investigated by scanning electron microscopy (SEM). The corrosion performance of this multilayer coating and single PPy coating were investigated in 3.5% NaCl solution by using open circuit potential (Eocp)–time curves, polarization curves and electrochemical impedance spectroscopy (EIS). It was found that the multilayer PPy/PANAP coating could provide much better protection than single PPy coating for corrosion of MS. It was observed that corrosion performance of coatings was increasing with immersion period. This was explained by auto-undoping properties of PPy coatings during immersion in corrosive solution. The improved corrosion performance in the presence of PANAP top coat on PPy was explained by increase in barrier effect of bilayer films.  相似文献   

18.
The corrosion behavior of mild steel in CO2-saturated 5% NaCl solution with N-[2-[(2-aminoethyl) amino] ethyl]-9-octadecenamide corrosion inhibitor at 25 °C has been studied by using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and Polarization Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS) measurements. Both potentiodynamic polarization and EIS measurements reveal that this amido-amine precursor inhibits the carbon steel corrosion and the inhibition efficiency increases with increasing the inhibitor concentration. The corrosion inhibitor exhibits high corrosion efficiencies as a mixed-type inhibitor, with a predominant influence on the anode process. The organic inhibitor acts blocking surface sites at low concentrations and by modifying the adsorption mechanism forming a protective barrier against corrosive ions at high concentrations. EIS results show that the mechanism of its corrosion inhibition at concentrations higher than 0.82 × 10−5 M is by forming a protective bilayer with small pore sizes that hinders the passage of the reactive species. PM-IRRAS measurements demonstrate that the inhibitor is chemisorbed to surface steel. Therefore, its spectrum reveals that the inhibitor monolayer has an amorphous structure.  相似文献   

19.
Polyaniline (PANI) coatings were electropolymerized on zinc-cobalt alloy deposited carbon steel (CS/ZnCo) electrode from an aqueous sodium oxalate solution using three different scan rates in cyclic voltammetric technique. Scanning electron microscopy (SEM) was used to analyze the surface morphology of the polymer film. The SEM images showed that the increase in scan rate induced an increase in grain size of the PANI film. The corrosion behavior of CS/ZnCo electrodes with and without PANI film in 3.5% NaCl solution were investigated through electrochemical impedance spectroscopy (EIS) and anodic polarization studies. The results of the study showed that the PANI coatings provided significant and effective protection for the CS/ZnCo electrode, in preventing corrosion. In addition, the PANI film that was synthesized at a high scan rate, exhibited the best anti-corrosive performance due to the formation of protective oxide layers through its catalytic efficiency.  相似文献   

20.
Polyaniline (PANI) and poly(N-methylaniline) (PNMA) have been electrodeposited on mild steel from oxalic acid bath using cyclic voltammetric technique. Pretreatments like passivation and primer polymer coatings were required for effective coating. Differently stacked composite polymer layers on the metal surface by layer-by-layer approach have also been obtained and their properties have been compared with their corresponding copolymer coatings. FTIR study confirms the formation of electroactive polymer compounds on mild steel. Evaluation of these coatings in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy reveals significant corrosion resistant behavior. Relatively higher corrosion protection is exhibited by copolymer coatings and composite-bilayer coatings than the corresponding homopolymer coatings. The composite metal–PANI–PNMA layer shows higher stability and better protection than the metal–PNMA–PANI layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号