首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The paper derives a robust networked controller design method for systems with saturation where the delay is large and uncertain, as in one‐directional data flow‐control. A classical linear H criterion is first formulated in terms of the sensitivity and complementary sensitivity functions. A new asymptotic constraint is then derived, which specifies the minimum amount of low frequency gain that is needed in the sensitivity function to conclude on non‐linear closed loop ‐stability using the Popov criterion. This result guides the selection of the design criterion, thereby adjusting the linear controller design for better handling of delay and saturation. The controller design method then uses gridding to pre‐compute a subset of the stability region. Based on the pre‐computed region, a robust ‐stable controller can be selected. Alternatively, an adaptive controller could recompute ‐stable controllers on‐line using the pre‐computed region. Simulations show that the controller meets the specified stability and performance requirements.  相似文献   

3.
Disturbance observer‐based elegant anti‐disturbance control (DOBEADC) scheme is proposed for a class of stochastic systems with nonlinear dynamics and multiple disturbances. The stochastic disturbance observer based on pole placement is constructed to estimate disturbance which is generated by an exogenous system. Then, composite DOBC and controller is designed to guarantee the composite system is mean‐square stable and its performance satisfies a prescribed level. Finally, simulations on an A4D aircraft model show the effectiveness of the proposed approaches.  相似文献   

4.
This paper considers the problem of achieving a very accurate tracking of a pre‐specified desired output trajectory , for linear, multiple input multiple output, non‐minimum phase and/or non hyperbolic, sampled data, and closed loop control systems. The proposed approach is situated in the general framework of model stable inversion and introduces significant novelties with the purpose of reducing some theoretical and numerical limitations inherent in the methods usually proposed. In particular, the new method does not require either a preactuation or null initial conditions of the system. The desired and the corresponding sought input are partitioned in a transient component ( and ut(k), respectively) and steady‐state ( and us(k), respectively). The desired transient component is freely assigned without requiring it to be null over an initial time interval. This drastically reduces the total settling time. The structure of ut(k) is a priori assumed to be given by a sampled smoothing spline function. The spline coefficients are determined as the least‐squares solution of the over‐determined system of linear equations obtained imposing that the sampled spline function assumed as reference input yield the desired output over a properly defined transient interval. The steady‐state input us(k) is directly analytically computed exploiting the steady‐state output response expressions for inputs belonging to the same set of .  相似文献   

5.
This paper investigates the problem of quantized filtering for a class of continuous‐time Markovian jump linear systems with deficient mode information. The measurement output of the plant is quantized by a mode‐dependent logarithmic quantizer, and the deficient mode information in the Markov stochastic process simultaneously considers the exactly known, partially unknown, and uncertain transition rates. By fully exploiting the properties of transition rate matrices, together with the convexification of uncertain domains, a new sufficient condition for quantized performance analysis is first derived, and then two approaches, namely, the convex linearization approach and iterative approach, to the filter synthesis are developed. It is shown that both the full‐order and reduced‐order filters can be obtained by solving a set of linear matrix inequalities (LMIs) or bilinear matrix inequalities (BMIs). Finally, two illustrative examples are given to show the effectiveness and less conservatism of the proposed design methods.  相似文献   

6.
To guarantee the position and velocity tracking performance of high speed trains (HSTs) with actuator faults, a composite control algorithm consisting of the disturbance‐observer‐based control (DOBC) and control is proposed. Based on the multiple point‐mass model, the dynamics of HSTs is established by a cascade of carriages which are connected by flexible couplers, during the procedure of which, the running resistance, actuator faults and multiple disturbances are taken into account. The multiple disturbances are composed of two parts, one of which is the ramp resistance due to the track slope, the other is unknown gusts which can be modeled as a harmonic disturbance with time‐varying frequency. The unknown gusts is estimated and rejected via the DOBC methodology, meanwhile, the running resistance and the ramp resistance are attenuated by the control methodology. According to the Lyapunov stability analysis and LMI‐based algorithms, main results are derived such that the closed‐loop system is asymptotically stable and the desired performance can be guaranteed. Compared with the numeral simulation results with the single control method, it is demonstrated that the proposed control methodology is more effective and the system has a higher precision of position and velocity tracking.  相似文献   

7.
In this paper, a methodology for designing an output feedback controller for discrete‐time networked control systems has been considered. More precisely, network‐induced delays between the sensor and the controller is modelled by a Markov chain with transition probabilities which are not assumed to be fully known. The systems parameter uncertainties are assumed to be norm‐bounded and possibly time‐varying. To the best of the authors knowledge, the problem of designing a partially mode delay‐dependent output feedback controller for NCSs with partially known transition probability matrix has not been investigated in the literature. Based on the Lyapunov‐Krasovskii functional approach, sufficient conditions for the existence of a robust partially mode delay‐dependent output feedback controller are given in terms of bilinear matrix inequalities which can be solved using a cone complementarity linearization algorithm. The proposed design methodology differs from the existing design methodologies in that dynamic output feedback controllers are parameterized by both modes and transition probabilities, as opposed to the existing design approaches which parameterize controllers by modes only. The results obtained reduce to the existing results on fully known transition matrices when transition probabilities are fully known. It is shown that the proposed methodology can be applied to real world systems. The proposed design methodology is verified by using a DC servo motor system where the plant and the controller are connected via a cellular network with partially known transition probability matrix.  相似文献   

8.
This paper considers the adaptive control problem for piecewise affine systems (PWS), a novel synthesis framework is presented based on the piecewise quadratic Lyapunov function (PQLF) instead of the common quadratic Lyapunov function to achieve the less conservatism. First, by designing the projection‐type piecewise adaptive law, the problem of the adaptive control of PWS can be reduced to the control problem of augmented piecewise systems. Then, we construct the piecewise affine control law for augmented piecewise systems in such a way that the PQLF can be employed to establish the stability and performance. In particular, the Reciprocal Projection Lemma is employed to formulate the synthesis condition as linear matrix inequalities (LMIs), which enables the proposed PQLF approach to be numerically solvable. Finally, an engineering example is shown to illustrate the synthesis results.  相似文献   

9.
This paper considers the problem of the control for T‐S fuzzy systems with input time‐varying delay via dynamic output feedback. Firstly, by applying the reciprocally convex approach, new delay‐dependent sufficient condition for performance analysis is obtained. Then, a less conservative condition for the existence of the controllers is given in terms of linear matrix inequalities (LMIs). Moreover, in the considered system, the time‐delay term is included in the measured output. This results in the difficulty in designing the controllers being increased and the obtained results being applied to a wider class of fuzzy systems than the most existing ones. The main contribution of this work lies in the application of the reciprocally convex inequality and the time‐delay term included in the measured output. Finally, the advantages and effectiveness of the present results are shown by several numerical examples.  相似文献   

10.
In this paper we deal with the mixed  /finite‐time stability control problem. More specifically, given an open loop uncertain linear system, we provide a necessary and sufficient condition for quadratic input‐output finite‐time stability with an  bound. Exploiting this result we also give a sufficient condition to solve the related synthesis problem via state‐feedback. The property of quadratic input‐output finite‐time stability with an  bound implies that the system under consideration satisfies an  performance bound between the disturbance input and the controlled output and, at the same time, is input‐output finite‐time stable for all admissible uncertainties. This condition requires the solution of a feasibility problem constrained by a pair of differential linear matrix inequalities (LMIs) coupled with a time‐varying LMI. The proposed technique is illustrated by means of both a numerical and a physical example.  相似文献   

11.
This paper is concerned with the problem of observer‐based control for a class of uncertain neutral‐type systems subjected to external disturbance by utilizing sliding mode technique. A novel sliding mode control (SMC) strategy is proposed based on the state estimate and the output. A new sufficient condition of robust asymptotic stability with disturbance attenuation level for the overall systems composed of the original system and error system in the sliding mode is derived in terms of a linear matrix inequality (LMI). Then, a new adaptive controller is designed to guarantee the reachability of the predefined sliding surface in finite‐time. Finally, numerical examples are provided to verify the effectiveness of the proposed method.  相似文献   

12.
This paper considers the stability analysis of reset control systems with time‐varying delay. Based on sector reset conditions, delay‐dependent exponential stability and finite gain stability conditions are proposed, and piecewise Lyapunov functions are used such that less conservative results can be obtained, moreover, gain performance improvement results are presented to show the advantage of reset control. Numerical examples are given to show the effectiveness.  相似文献   

13.
We present anefficient algorithm for determining an aesthetically pleasing shape boundary connecting all the points in a given unorganized set of 2D points, with no other information than point coordinates. By posing shape construction as a minimisation problem which follows the Gestalt laws, our desired shape is non‐intersecting, interpolates all points and minimizes a criterion related to these laws. The basis for our algorithm is an initial graph, an extension of the Euclidean minimum spanning tree but with no leaf nodes, called as the minimum boundary complex . and can be expressed similarly by parametrizing a topological constraint. A close approximation of , termed can be computed fast using a greedy algorithm. is then transformed into a closed interpolating boundary in two steps to satisfy ’s topological and minimization requirements. Computing exactly is an NP (Non‐Polynomial)‐hard problem, whereas is computed in linearithmic time. We present many examples showing considerable improvement over previous techniques, especially for shapes with sharp corners. Source code is available online.  相似文献   

14.
In predicting time series, if a trend includes a structural break, then a state space model can be applied to revise the predictive method. Some scholars suggest that restricted damped trend models yield excellent prediction results by automatically revising unforeseen structural break factors in the prediction process. Restricted damped trend models add a smoothed error statistic to a local‐level model and use the exponentially weighted moving average (EWMA) method to make corrections. This paper applies the generally weighted moving average (GWMA) concept and method to a restricted damped trend model that changes the smoothed error statistic from the EWMA form to the GWMA form and adds the correction parameter λ, which distinguishes three situations , , and . The original restricted damped trend model applies only to , enabling the model to capture situations in which and increases its generality. This paper also compares the effect of various parameter values on the predictive model and finds the range of parameter settings that optimize the model.  相似文献   

15.
A reliable decentralized supervisory control framework for discrete‐event systems is proposed to deal with possible actuation failures and communication delays. We mainly focus on the existence of such a controller that the control performance can be guaranteed even in face of local supervisor failures and communication delays. Especially, the existence of k‐reliable decentralized supervisors under communication delays is characterized by the notion of k‐reliable together with . In addition, the verification for k‐reliable decentralized supervisors is investigated by developing a constructive methodology to test the k‐reliable . It is shown that for a given number of distributed components, the existence of such k‐reliable decentralized supervisors can be checked with a polynomial complexity in the size of the state space.  相似文献   

16.
This paper focuses on the problems of robust stability and stabilization and robust control for uncertain singular Markovian jump systems with (x,v)‐dependent noise. The parameter uncertainties appearing in state, input, disturbance as well as diffusion terms are assumed to be time‐varying but norm‐bounded. Based on the approach of generalized quadratic stability, the memoryless state feedback controller is designed for the robust stabilization problem, which ensures that the resulting closed‐loop system has an impulse‐free solution and is asymptotically stable in the mean square. Furthermore, the results of robust control problem are derived. The desired state feedback controller is presented, which not only meets the requirement of robust stabilization but also satisfies a prescribed performance level. The obtained results are formulated in terms of strict LMIs. What we have obtained can be viewed as corresponding extensions of existing results on uncertain singular systems. A numerical example is finally given to demonstrate the application of the proposed method.  相似文献   

17.
The determinization of a nondeterministic finite automaton (FA) is the process of generating a deterministic FA (DFA) equivalent to (sharing the same regular language of) . The minimization of is the process of generating the minimal DFA equivalent to . Classical algorithms for determinization and minimization are available in the literature for several decades. However, they operate monolithically, assuming that the FA to be either determinized or minimized is given once and for all. By contrast, we consider determinization and minimization in a dynamic context, where augments over time: after each augmentation, determinization and minimization of into is required. Using classical monolithic algorithms to solve this problem is bound to poor performance. An algorithm for incremental determinization and minimization of acyclic finite automata, called IDMA, is proposed. Despite being conceived within the narrow domain of model‐based diagnosis and monitoring of active systems, the algorithm is general‐purpose in nature. Experimental evidence indicates that IDMA is far more efficient than classical algorithms in solving incremental determinization and minimization problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Let be a simple graph with nodes and links, a subset of “terminals,” a vector , and a positive integer d, called “diameter.” We assume that nodes are perfect but links fail stochastically and independently, with probabilities . The “diameter‐constrained reliability” (DCR) is the probability that the terminals of the resulting subgraph remain connected by paths composed of d links, or less. This number is denoted by . The general DCR computation belongs to the class of ‐hard problems, since it subsumes the problem of computing the probability that a random graph is connected. The contributions of this paper are twofold. First, a full analysis of the computational complexity of DCR subproblems is presented in terms of the number of terminal nodes and the diameter d. Second, we extend the class of graphs that accept efficient DCR computation. In this class, we include graphs with bounded co‐rank, graphs with bounded genus, planar graphs, and, in particular, Monma graphs, which are relevant to robust network design.  相似文献   

19.
index of mean‐field stochastic differential equations (SDE) is investigated in this paper. For systems with state‐ and input‐dependent noise, we obtain a sufficient condition of index larger than some λ>0 via the solvability of differential Riccati equations (DRE). Especially, a necessary and sufficient condition is given for mean‐field SDE with state‐dependent noise, which generalize the corresponding results of classical stochastic systems to the mean‐field stochastic models.  相似文献   

20.
The paper presents a robust fault estimation approach for a class of nonlinear discrete‐time systems. In particular, two sources of uncertainty are present in the considered class of systems, that is, an unknown input and an exogenous external disturbance. Thus, apart from simultaneous state and fault estimation, the objective is to decouple the effect of an unknown input while minimizing the influence of the exogenous external disturbance within the framework. The resulting design procedure guarantees that a prescribed disturbance attenuation level is achieved with respect to the state and fault estimation error while assuring the convergence of the observer. The core advantage of the proposed approach is its simplicity by reducing the fault estimation problem to matrix inequalities formulation. In addition, the design conditions ensure the convergence of the observer with guaranteed performance. The effectiveness of the proposed approach is demonstrated by its application to a twin rotor multiple‐input multiple‐output system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号