首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, the exponential stability problem is investigated for a class of discrete‐time singular switched systems with time‐varying delay. By using a new Lyapunov functional and average dwell time scheme, a delay‐dependent sufficient condition is established in terms of linear matrix inequalities for the considered system to be regular, causal, and exponentially stable. Different from the existing results, in the considered systems the corresponding singular matrices do not need to have the same rank. A numerical example is given to demonstrate the effectiveness of the proposed result.  相似文献   

2.
The stability analysis problem is considered for linear discrete‐time systems with time‐varying delays. A novel summation inequality is proposed, which takes the double summation information of the system state into consideration. The inequality relaxes the recently proposed discrete Wirtinger inequality and its improved version. Based on construction of a suitable Lyapunov‐Krasovskii functional and the novel summation inequality, an improved delay‐dependent stability criterion for asymptotic stability of the systems is derived in terms of linear matrix inequalities. Numerical examples are given to demonstrate the advantages of the proposed method.  相似文献   

3.
In this paper, an efficient finite difference method is presented for the solution of time‐delay optimal control problems with time‐varying delay in the state. By using the Pontryagin's maximum principle, the original time‐delay optimal control problem is first transformed into a system of coupled two‐point boundary value problems involving both delay and advance terms. Then the derived system is converted into a system of linear algebraic equations by using a second‐order finite difference formula and a Hermite interpolation polynomial for the first‐order derivatives and delay terms, respectively. The convergence analysis of the proposed approach is provided. The new scheme is also successful for the optimal control of time‐delay systems affected by external persistent disturbances. Numerical examples are included to demonstrate the validity and applicability of the new technique. Some comparative results are included to illustrate the effectiveness of the proposed method.  相似文献   

4.
In this paper, a new class of augmented quasi full size Lypunov‐Krasovskii functional is introduced for the robust stability of uncertain neutral systems with mixed time‐varying discrete and neutral delays. The nonlinear parameter perturbations and norm‐bounded uncertainties are taken into consideration separately. Delay‐dependent robust stability criteria are derived in the form of linear matrix inequalities. Numerical examples are presented to illustrate the significant improvement on the conservativeness of the delay bound over some reported results in the literature.  相似文献   

5.
This paper investigates the stability of linear uncertain systems with time‐varying delay. Stability criteria are derived based on a generalized discretized Lyapunov functional approach. The kernel of the functional, which is a function of two variables, is chosen as piecewise linear. The stability conditions are written in the form of linear matrix inequalities. Numerical examples indicate significant improvements over the existing results.  相似文献   

6.
This paper develops a novel finite‐time control design for linear systems subject to time‐varying delay and bounded control. Based on the Lyapunov‐like functional method and using a result on bounding estimation of integral inequality, we provide some sufficient conditions for designing state feedback controllers that guarantee the robust finite‐time stabilization with guaranteed cost control. The conditions are obtained in terms of linear matrix inequalities (LMIs), which can be determined by utilizing the MATLAB LMI Control Toolbox. A numerical example is given to show the effectiveness of the proposed method.  相似文献   

7.
This paper is concerned with the robust stability of time‐varying delay systems with structured uncertainties. Stability conditions are provided through a Lyapunov‐Krasovskii functional (LKF) method. The proposed method introduces a linear function of the time‐varying delay to construct the LKF. With this function, two‐dimensional partition is conducted on the integral domain in the derivative of LKF. Quadratic convex combination then is employed to present stability criteria in the form of linear matrix inequalities (LMIs). The method not only exploits the information of delay at different time instants, but also enables the handling of its derivative to reduce conservatism. Numerical examples are given to show the effectiveness of our method.  相似文献   

8.
In this article, we are interested in analysing the stability of systems that incorporate time‐varying delays in their dynamic. The Lyapunov‐Krasovskii approach is definitely the most popular method to address this issue and many results have proposed new functionals and enhanced techniques for deriving less conservative stability conditions. In the present work, we propose an original approach: the quadratic separation. To this end, the delay operator properties are exploited to provide delay range stability conditions. In particular, L2‐norm of delay‐dependent operators are computed so as to reduce the conservatism of the approach. Moreover, the main result is able to assess the stability of non‐small delay systems, i.e, it can detect a stability interval for systems that are unstable without any delay. Several examples illustrate the benefit of our methodology.  相似文献   

9.
In this paper, we develop an innovative control method for linear systems with time‐varying delay by integrating the semi‐discretization method and the hysteresis‐based switching algorithm. The semi‐discretization method is adopted to design an optimal controller for each fixed time‐delay and form a candidate controller family. The switching algorithm acts as the principal law for switching among various controllers according to the instantaneous value of the time‐delay. A theoretical proof is presented regarding the stability of the switching time‐delay system. It is shown that the most significant factors that affect the system stability are the size of the candidate controller family, the value of the switching coefficient, and the changing rate of the time‐delay. Two case studies are presented to show the effectiveness of the proposed method.  相似文献   

10.
This paper investigates the synchronization problem of a class of complex dynamical networks via an adaptive control method. It differs from existing works in considering intrinsic delay and multiple different time‐varying coupling delays, and uncertain couplings. A simple approach is used to linearize the uncertainties with the norm‐bounded condition. Simple but suitable adaptive controllers are designed to drive all nodes of the complex network locally and globally synchronize to a desired state. In addition, several synchronization protocols are deduced in detail by virtue of Lyapunov stability theory and a Cauchy matrix inequality. Finally, a simulation example is presented, in which the dynamics of each node are time‐varying delayed Chua chaotic systems, to demonstrate the effectiveness of the proposed adaptive method.  相似文献   

11.
We investigate the exponential stability and L2‐gain analysis for the synchronization of stochastic complex networks under average dwell time switched topology with consideration of external disturbance, internal noise and fast time‐varying delay in the synchronized process. Based on the proposed stochastic network, a new L2‐gain synchronization is proposed to solve the mean‐square exponential stable under switched topology with an H performance from the extrinsic disturbances to the synchronization error. The obtained results are applicable for the fast time‐varying case with larger‐than‐1 delay derivative. Finally, numerical simulations are performed to demonstrate the effectiveness of our strategies.  相似文献   

12.
This paper studies the problem of stabilization criteria for systems with two additive time‐varying delays. First, the delay‐dependent stability condition for the systems is established through computing the more general Lyapunov functional. The Lyapunov functional is constructed by making full use of the property and the information of the systems, and the condition has advantages over the existing ones in the skillful combination of the delay decomposition and the reciprocal convex approach. Second, considered to be more flexible for the controller design with the introduced positive scalar, a new controller method is presented. Finally, two examples are provided to demonstrate the advantage of the results in this paper.  相似文献   

13.
This paper proposes a robust adaptive dynamic surface control (DSC) scheme for a class of time‐varying delay systems with backlash‐like hysteresis input. The main features of the proposed DSC method are that 1) by using a transformation function, the prescribed transient performance of the tracking error can be guaranteed; 2) by estimating the norm of the unknown weighted vector of the neural network, the computational burden can be greatly reduced; 3) by using the DSC method, the explosion of complexity problem is eliminated. It is proved that the proposed scheme guarantees all the closed‐loop signals being uniformly ultimately bounded. The simulation results show the validity of the proposed control scheme.  相似文献   

14.
This paper is concerned with the stability and stabilization problem of a class of discrete‐time switched systems with mode‐dependent average dwell time (MDADT). A novel Lyapunov function, which is both mode‐dependent (MD) and quasi‐time‐dependent (QTD), is established. The new established Lyapunov function is allowed to increase at some certain time instants. A QTD controller is designed such that the system is globally uniformly asymptotically stable (GUAS) and has a guaranteed performance index. The new QTD robust controller designed in this paper is less conservative than the mode independent one which is frequently considered in literatures. Finally, a numerical example and a practical example are provided to illustrate the effectiveness of the developed results.   相似文献   

15.
This paper considers the problem of the control for T‐S fuzzy systems with input time‐varying delay via dynamic output feedback. Firstly, by applying the reciprocally convex approach, new delay‐dependent sufficient condition for performance analysis is obtained. Then, a less conservative condition for the existence of the controllers is given in terms of linear matrix inequalities (LMIs). Moreover, in the considered system, the time‐delay term is included in the measured output. This results in the difficulty in designing the controllers being increased and the obtained results being applied to a wider class of fuzzy systems than the most existing ones. The main contribution of this work lies in the application of the reciprocally convex inequality and the time‐delay term included in the measured output. Finally, the advantages and effectiveness of the present results are shown by several numerical examples.  相似文献   

16.
This paper is concerned with the problems of delay‐dependent stability and static output feedback (SOF) control of two‐dimensional (2‐D) discrete systems with interval time‐varying delays, which are described by the Fornasini‐Marchesini (FM) second model. The upper and lower bounds of delays are considered. Applying a new method of estimating the upper bound on the difference of Lyapunov function that does not ignore any terms, a new delay‐dependent stability criteria based on linear matrix inequalities (LMIs) is derived. Then, given the lower bounds of time‐varying delays, the maximum upper bounds in the above LMIs are obtained through computing a convex optimization problem. Based on the stability criteria, the SOF control problem is formulated in terms of a bilinear matrix inequality (BMI). With the use of the slack variable technique, a sufficient LMI condition is proposed for the BMI. Moreover, the SOF gain can be solved by LMIs. Numerical examples show the effectiveness and advantages of our results.  相似文献   

17.
This paper focuses on spatially interconnected Markovian jump systems with time‐varying delays. Firstly, a sufficient condition is given to check the well‐posedness, stochastic stability and contractiveness of spatially interconnected systems with the effect of time‐varying delays and Markovian jumping parameters. Secondly, the distributed controllers which inherit the structure of the plants are designed. A sufficient and necessary condition is proposed to guarantee the existence of the distributed controllers. Finally, an illustrative numerical example is given to show the effectiveness of the results.  相似文献   

18.
Guaranteed cost stabilization of cellular neural networks with time‐varying delay (DCNNs) is considered in this paper. Via applying the zoned discussion and maximum synthesis (ZDMS) in DCNNs and Lyapunov–Krasovskii functional, a less conservative feedback control law in the form of quadratic matrix inequality (QMI) is derived to achieve globally asymptotic stability of the system.  相似文献   

19.
This paper deals with the problem of the robust stochastic stability for a class of singular systems with uncertain Markovian jump and time‐varying delay. Sufficient conditions on the stochastic stability are presented. The obtained results are formulated in terms of strict linear matrix inequalities. A numerical example is provided to show the effectiveness of the proposed approaches.  相似文献   

20.
In this paper, a delay‐compensated bang‐bang control design methodology for the control of the nozzle output flow rate of screw extruder‐based three‐dimensional printing processes is developed. A geometrical decomposition of the screw extruder in a partially and a fully filled regions allows to describe the material convection in the extruder chamber by a one‐dimensional hyperbolic partial differential equation (PDE) coupled with an ordinary differential equation. After solving the hyperbolic PDE by the method of characteristics, the coupled PDE–ordinary differential equation's system is transformed into a nonlinear state‐dependent input delay system. The aforementioned delay system is extended to the non‐isothermal case with the consideration of periodic fluctuations acting on the material's convection speed, which represent the process variabilities due to temperature changes in the extruder chamber, resulting to a nonlinear system with an input delay that simultaneously depends on the state and the time variable. Global exponential stability of the nonlinear delay‐free plant is established under a piecewise exponential feedback controller that is designed. By combining the nominal, piecewise exponential feedback controller with nonlinear predictor feedback, the compensation of the time‐dependent and state‐dependent input delay of the extruder model is achieved. Global asymptotic stability of the closed‐loop system under the bang‐bang predictor feedback control law is established when certain conditions related to the extruder design and the material properties, as well as to the magnitude and frequency of the materials transport speed variations, are satisfied. Simulations results are presented to illustrate the effectiveness of the proposed control design. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号