首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the consensus problem of second‐order discrete‐time multi‐agent systems with relative‐state‐dependent noises. Directed switching topologies are considered. Firstly, for a kind of switching topology with each digraph containing a spanning tree, we give a weak consensus result on the basis of the mode‐dependent average dwell time method. Then, if all digraphs in a switching topology are strongly connected and the corresponding Laplacian matrices have a common left eigenvector for zero eigenvalue, we prove that the mean square and almost sure consensus can always be guaranteed for an arbitrary switching sequence with some constant distributed control gains, and we also give the statistic properties of the final consensus points. Numerical examples are presented to illustrate the effectiveness of our results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates the finite‐time consensus problem for multi‐agent systems with second‐order individual dynamics under switching topologies. A distributed continuous‐time protocol is designed to guarantee finite‐time consensus for homogeneous agents without predetermined leaders, i.e., it ensures agents asymptotically converge to an average consensus within finite time, even if the interaction topology among them is time‐varying but stepwise jointly‐connected. In particular, it introduces a distributed continuous‐time protocol to reach consensus in finite time and reduce the chattering together. Finally, the simulation results are also given to validate the proposed approach.  相似文献   

3.
This paper focuses on the average consensus problem of first‐order and second‐order continuous‐time multi‐agent systems with logarithmic quantized information transmission. The balanced and strongly connected digraphs are utilized to characterize the interaction topologies between agents. Based on the state estimation, distributed state updating mechanisms are introduced for every agent such that all agents’ states achieve average consensus asymptotically. By means of differential inclusion theory, we discuss the existence and convergence property of the Krasovskii solutions to the closed‐loop system models. By designing the proper control gain parameters and quantizer accuracy, two sufficient conditions are established to guarantee the achievement of average consensus. Finally, two numerical simulations are provided to illustrate the effectiveness of theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Guaranteed‐cost consensus analysis and design problems for high‐order linear time‐invariant swarm systems are dealt with in this paper. First, a guaranteed‐cost consensus control problem is introduced to obtain a trade‐off design object between consensus regulation performances and control energy consumptions. Then, sufficient conditions for guaranteed‐cost consensus and consensualization are presented respectively, an upper bound of the cost function is determined, and explicit expressions of consensus functions are given, which are independent of interaction topologies of swarm systems. Finally, a numerical example is shown to demonstrate theoretical results.  相似文献   

5.
Guaranteed‐performance consensus design problems for both the leaderless and leader‐following high‐order multi‐agent systems with balanced directed switching topologies and Lipschitz nonlinear dynamics are investigated. Consensus protocols and quadratic performance functions based on state errors are proposed to obtain the guaranteed‐performance consensus. By a state decomposition method, the consensualization problems for leaderless cases are transformed into asymptotic stability ones of a reduced‐order subsystem and the guaranteed‐performance cost is determined by the Lyapunov stability analysis of the reduced‐order subsystem, and the state error method is utilized to deal with the guaranteed‐performance consensualization problems for leader‐following cases. Then, by using the structure property of the transformation matrix and the Lipschitz condition, the impacts of Lipschitz nonlinear terms can be determined. Moreover, guaranteed‐performance consensualization criteria are presented based on linear matrix inequalities for both leaderless and leader‐following cases with directed switching topologies. Furthermore, the guaranteed‐performance costs are determined, which can respectively reflect the structures of the interaction topologies of leaderless and leader‐following cases. Finally, two numerical simulations are presented to verify the validity of theoretical results.  相似文献   

6.
This paper considers consensus problem for high‐order multi‐agent systems with dynamically changing topologies and nonuniform time‐varying delays. By means of the tree‐type transformation approach, the model transformation is conducted and the consensus problem is converted into an L2 ? L control problem of equivalent reduced‐order systems. Furthermore, a Lyapunov‐Krasovkii function is constructed for stability analysis and sufficient conditions in terms of linear matrix inequalities are derived to ensure the consensus with the prescribed L2 ? L performance. A numerical simulation is provided to verify the correctness of the theoretical results.  相似文献   

7.
The current paper investigates guaranteed‐cost output consensus analysis and design problems for high‐order linear time‐invariant singular multi‐agent systems with constant time delays, which can realize suboptimal output consensus control. Firstly, a new output consensus protocol with a suboptimal index and a single delay is proposed to realize the tradeoff design between output consensus regulation performances and control energy consumptions. Then, sufficient conditions for guaranteed‐cost output consensus and consensualization are derived in terms of linear matrix inequalities by a combined tool from the Lyapunov‐Krasovskii approach and the free‐weighting matrix technique, respectively, and the output consensus function is determined on the basis of the First Equivalent Form. Finally, a numerical example is performed to demonstrate the effectiveness and conservativeness of theoretical results.  相似文献   

8.
This paper studies the node‐to‐node consensus problem for multi‐agent networks possessing a leaders' layer and a followers' layer via the pinning control. In order to realize the consensus and reduce the update frequency of the controller, a suitable event‐triggered mechanism is introduced into the control strategy. Furthermore, the phenomenon of packet loss is considered in the designed controller. Based on the M‐matrix theory and Lyapunov stability theory, this paper presents the sufficient conditions for the node‐to‐node consensus of networks. Meanwhile, it is proved that the Zeno behaviour is excluded. Finally, two numerical simulations are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

9.
In this study, consensus problems for second‐order multi‐agent systems with nonuniform and switching topologies are investigated. Each agent has a self‐delay, and each delay is independent of the others. As a measure of the disagreement dynamics, a class of positive semi‐definite Lyapunov–Krasovskii functions are introduced. Using algebraic graph theory and these Lyapunov–Krasovskii functions, sufficient conditions are derived by contradiction under which all agents asymptotically reach consensus. Finally, the effectiveness of the obtained theoretical results is demonstrated through numerical simulations.  相似文献   

10.
This paper considers the average consensus problems of a class of multi‐agent systems (MAS) with binary‐valued communication. Each agent can only obtain its neighbor's binary‐valued information under measurement noise because of limited bandwidth in communication channels. To seek consensus, we propose a two‐scale multi‐agent consensus algorithm with distributed strategy by combining state estimation and control design alternately. An exponential step size is chosen in the state estimation process and the estimation method can be proved to be asymptotically efficient. Additionally, by utilizing a distributed control law designed based on the estimates of the neighbors' states with a constant gain, we further prove that the proposed average consensus algorithm is convergent. Furthermore, the proposed average consensus algorithm is given and proved. Finally, some simulation results, which illustrate the effectiveness of the obtained results, are also given in the paper.  相似文献   

11.
This article aims to solve leaderless and leader‐following consensus problems for general linear systems by integral‐type event‐triggered control method. Different from the existing integral‐type event‐triggered controllers for multiagent systems (MASs), a modified distributed integral‐type event‐triggered scheme is designed via defining a measurement error without continuous communication. Then, distributed event‐triggered protocols are proposed for MASs to achieve the leaderless and leader‐following consensus. Moreover, for the case that all the agents' states are not available, distributed observers are given to estimate the full states. Meanwhile, leaderless and leader‐following consensus problems are investigated based on the observer‐based event‐triggered schemes. In addition, no agent will exhibit Zeno behavior. Finally, simulations are given to verify the effectiveness of our results.  相似文献   

12.
This paper proposes a consensus algorithm for continuous‐time single‐integrator multi‐agent systems with relative state‐dependent measurement noises and time delays in directed fixed and switching topologies. Each agent's control input relies on its own information state and its neighbors' information states, which are delayed and corrupted by measurement noises whose intensities are considered a function of the agents' relative states. The time delays are considered time‐varying and uniform. For directed fixed topologies, condition to ensure mean square linear χ‐consensus (average consensus, respectively) are derived for digraphs having spanning tree (balanced digraphs having spanning tree, respectively). For directed switching topologies, conditions on both time delays and dwell time have been given to extend the mean square linear χ‐consensus (average consensus, respectively) of fixed topologies to switching topologies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper addresses the finite‐time and the prescribed finite‐time event‐triggered consensus tracking problems for second‐order multi‐agent systems (MASs) with uncertain disturbances. The prescribed finite‐time event‐triggered consensus of the second‐order disturbed MASs was obtained for the first time and the controller is nonsingular. Furthermore, a new self‐triggered control scheme is presented for the finite‐time consensus tracking, and the continuous communication can be avoided in the triggering condition monitoring. Hence, the finite‐time consensus tracking can be achieved with intermittent communication. Moreover, Zeno behavior is excluded for each follower. The efficiency of the proposed algorithms is verified by numerical simulations.  相似文献   

14.
This paper investigates the distributed scaled consensus problem of multiple agents with high‐order dynamics under the asynchronous setting, where each agent measures the neighbors' information at certain discrete time instants according to its own clock rather than the whole discrete process and all agents' clocks are independent of each other. Assume that the communication topology can be arbitrarily switched and the information transfer between agents has a time‐varying delay. Under the designed asynchronous distributed control protocol, it is shown that the agents with the same scale will reach a common final state, while the agents with different scales will reach different final states. Moreover, an effective parameters selection strategy is presented for a large number of gain parameters in high‐order multiagent systems based on novel model transformation techniques. Simulation examples are provided to demonstrate the high‐order scaled consensus performances for the agents in the presence of asynchronous setting.  相似文献   

15.
This paper is concerned with the adaptive leader‐following consensus for first‐ and second‐order uncertain nonlinear multi‐agent systems (NMASs) with single‐ and double‐integrator leader, respectively. Remarkably, the control coefficients of the followers need not belong to any known finite interval, which makes the systems in question essentially different from those in the related works. Moreover, parameterized unknowns exist in the nonlinearities of the followers, and unknown control input is imposed on the leader, which make the problems difficult to solve. To compensate for these uncertainties/unknowns, the leader‐following consensus protocols are constructed by employing adaptive technique for the first‐order and the second‐order NMASs. Under the designed adaptive consensus protocols and the connected graph, the leader‐following consensus is achieved. Finally, two examples are given to show the effectiveness of the proposed leader‐following consensus protocols.  相似文献   

16.
In this paper, we consider the consensus problem of discrete‐time multi‐agent systems with multiplicative communication noises. Each agent can only receive information corrupted by noises from its neighbors and/or a reference node. The intensities of these noises are dependent on the relative states of agents. Under some mild assumptions of the noises and the structure of network, consensus is analyzed under a fixed topology, dynamically switching topologies and randomly switching topologies, respectively. By combining algebraic graph theory and martingale convergence theorem, sufficient conditions for mean square and almost sure consensus are given. Further, when the consensus is achieved without a reference, it is shown that the consensus point is a random variable with its expectation being the average of the initial states of the agents and its variance being bounded. If the multi‐agent system has access to the state of the reference, the state of each agent can asymptotically converge to the reference. Numerical examples are given to illustrate the effectiveness of our results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, an output‐feedback adaptive consensus tracking control scheme is proposed for a class of high‐order nonlinear multi‐agent systems. The agents are allowed to have unknown parameters, unknown nonlinearities, and input quantization simultaneously. The desired trajectory to be tracked is available for only a subset of agents, and only the relative outputs and the quantized inputs need to be measured or transmitted as signal exchange among neighbors regardless of the system order. By introducing a kind of high‐gain K‐filters and a smooth function, the effect among agents caused by the unknown nonlinearities is successfully counteracted, and all closed‐loop signals are proved to be globally uniformly bounded. Moreover, it is shown that the tracking errors converge to a residual set that can be made arbitrarily small. Simulation results on robot manipulators are presented to illustrate the effectiveness of the proposed scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
The bipartite consensus problem is investigated for double‐integrator multi‐agent systems in the presence of measurement noise. A distributed protocol with time‐varying consensus gain is proposed. By using tools of state transition matrix and algebraic graph theory, necessary and sufficient conditions for the designed protocol to be a mean square bipartite linear χ‐consensus protocol are given. It is shown that the signed digraph being structurally balanced and having a spanning tree are not only sufficient, but also necessary for bipartite consensus. Furthermore, the protocol is proved to be a mean square bipartite average consensus protocol if the signed graph is weight balanced.  相似文献   

19.
This paper studies the consensus problem for a class of general third‐order multi‐agent systems on an undirected connected network. By employing a variables transformation, the consensus control problem can be turned into a asymptotical stability problem. Then we present a necessary and sufficient condition for guaranteeing consensus by using Routh‐Hurwitz stability criterion. And this result can be applied to a special case of third‐order integrator systems. Also we will present a tolerable communication time delay for third‐order integrator systems under the assumption that multi‐agent systems can reach consensus without communication delay.  相似文献   

20.
This paper deals with the robust consensus tracking problem for a class of heterogeneous second‐order nonlinear multi‐agent systems with bounded external disturbances. First, a distributed adaptive control law is proposed based on the relative position and velocity information. It is shown that for any connected undirected communication graph, the proposed control law solves the robust consensus tracking problem. Then, by introducing a novel distributed observer and employing backstepping design techniques, a distributed adaptive control law is constructed based only on the relative position information. Compared with the existing results, the proposed adaptive consensus protocols are in a distributed fashion, and the nonlinear functions are not required to satisfy any globally Lipschitz or Lipschitz‐like condition. Numerical examples are given to verify our proposed protocols. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号