首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Selectivity and resolution were studied for the separation of seven corticosteroids by micellar electrokinetic capillary chromatography (MEKC) using a mixed micellar solution of sodium dodecyl sulfate (SDS) and sodium cholate (SC), buffered with 3-(N-morpholino)propanesulfonic acid (MOPS) or 3-[(1,1-dimethyl-2-hydroxyethyl)amino]-2-hydroxypropane sulfonic acid (AMPSO). The changes in selectivity were compared for the AMPSO-SDS-SC system by varying the pH and the concentrations of AMPSO, SDS and SC. The experimental design started with the central composite design and continued in a sequential manner. The optimum selectivity for the separation of the corticosteroids was calculated from the analyte migration times and the analyte velocities, by using empirical quadratic regression models. Satisfactory regression fits and coefficients of determination for prediction were obtained with cross-validated models. To optimize the resolution, the physical parameters of capillary length and analysis time were varied under the conditions optimal for the selectivity. In both the selectivity and the resolution, optimization the overall optimum was determined by using the desirability function technique. Analysis times were controlled by using 1,3-diaminopropane to influence the electroosmotic flow velocity (veo). The voltage was kept constant, which resulted in higher electric field strength in shorter capillaries. No changes in the selectivity were observed when 1,3-diaminopropane was used to control the electroosmotic flow velocity. Such an optimization technique, where the chemical and physical factors affecting the separation are treated independently, seemed to be effective for finding the best possible resolution for the corticosteroids.  相似文献   

2.
Capillary electrophoresis (CE) provides high separation efficiency and thus is suitable for the analysis of complex mixtures of structurally similar compounds. The versatile nature of CE can be realised by controlling the chemistry of the inner capillary wall, by modifying the electrolyte composition and by altering the physicochemical properties of the analyte. A CE method has been developed for the separation of three macrolide antibiotics, erythromycin, oleandomycin and josamycin. A systematic approach was used to maximise analyte differential electrophoretic mobility by manipulating electrolyte pH, molarity and composition. In addition, some instrumental parameters such as capillary length and diameter and applied voltage were varied. The effect of the sample solvent and on-capillary concentrating techniques such as field amplified sample injection were investigated. Also, the influence of the injection of a water plug on the quantity of sample injected was demonstrated. The macrolides were completely resolved in less than 30 min in a 100 cm x 75 microm I.D. fused-silica uncoated capillary with a Z-shaped flow cell of path-length 3 mm. The analysis was performed in a 75 mM phosphate buffer (pH 7.5) with 50% (v/v) methanol and an applied voltage of 25 kV was selected to effect the separation.  相似文献   

3.
A plot of absorbance vs 1/time (the "1/time domain") is a more useful representation of the primary data in capillary electrophoresis than traditional plots of absorbance vs time (the "time domain") in a wide set of circumstances, especially when comparing electropherograms in which the rate of electroosmotic flow is not precisely the same. The quantity that is of fundamental interest in capillary electrophoresis (CE) is the electrophoretic mobility of an analyte. The electrophoretic mobility of a species is nonlinearly proportional to time and, therefore, not linearly represented in the time domain: that is, the distance between two peaks along the time axis is not linearly related to the difference in their electrophoretic mobilities. In contrast, the electrophoretic mobility is linearly proportional to 1/time, and the distance between two peaks along the 1/time axis is linearly related to the difference in electrophoretic mobilities. Plots in the 1/time domain are similar to the familiar plots in the time domain (each analyte is represented by a peak, and the order of peaks corresponds to the order in which these analytes reach the detector), but the spacing between the peaks corresponds linearly to differences in mobility. This article derives this useful, visually appealing, and broadly applicable plotting strategy and illustrates common situations in which these plots are more useful than plots in the time domain.  相似文献   

4.
The polymerized surfactant poly(sodium N-undecylenyl amino L-valinate) [poly(L-SUV)] has been used in micellar electrokinetic capillary chromatography for the chiral separation of various acidic and basic drugs, as well as neutral compounds. Under the conditions studied, poly(L-SUV) was shown to be a very versatile anionic chiral selector in the pH range of 5.6-11. The micelle was used for the enantioseparation of coumarinic anticoagulant drugs with various buffers under moderately acidic conditions. Neutral and alkaline buffer conditions were used to successfully separate the neutral atropisomers (+/-)-1,1'-bi-2-naphthol, (+/-)-1,1'-binaphthyl-2,2'-diamine, and Tr?ger's base. Chiral separation of the cationic paveroline drugs, laudanosine, norlaudanosoline, and laudanosoline, was influenced by pH and the use of coated capillaries. The acquired data focused on optimizing the migration times, capacity and separation factors, and electrophoretic mobilities of the various racemic mixtures.  相似文献   

5.
A recently proposed method for the separation of fat-soluble vitamins by electrokinetic chromatography was further developed and investigated in the present study. The separation medium consisted of acetonitrile-water (80:20 v/v) and contained 80 mM tetradecylammonium bromide (TDA+); the content of acetonitrile served to maintain the hydrophobic vitamins dissolved during electrophoresis, while the TDA+ ions served as the pseudostationary phase. With the cathode placed at the outlet of the capillary, the fat-soluble vitamins were separated based on different hydrophobic interactions to the TDA+ ions and migrated in order of decreasing hydrophobicity prior to the electroosmotic flow. Migration time stability was significantly enhanced by the addition of 4 mM borate to the separation medium. The separation system was validated for the determination of vitamin E acetate in commercial tablets; quantitative results deviated by less than 3.5% from specified values, varying by less than 2.5% relative standard deviation (RSD) for within-day experiments, and by less than 6.5% RSD during between-day experiments. The separation system was compatible with injection solvents ranging in polarity from water to tetrahydrofuran, and was even capable of separating the water-soluble vitamins B1, B2, B12, and nicotinamide.  相似文献   

6.
Polyethyleneimine (PEI, molecular weight 6 x 10(5) - 1 x 10(6)) is applied as a positively charged pseudostationary phase for electrokinetic chromatography (EKC) of uncharged mono- and oligophenols. EKC is carried out in PEI-coated fused-silica capillaries (with electroosmotic flow directed towards the anode) in 2-(N-morpholino)ethanesulfonic acid (MES) buffer (pH 7.0, 20 mM) with PEI added to the solution in concentrations up to 0.70% w/v. The pseudostationary phase leads to a retardation of the solutes mainly according to the number (and the position) of the OH-groups of the separands, and is not influenced significantly by methyl groups. For 0.70% w/v PEI solution, for instance, the relative retention, rho, has values between 0.33 and 0.53. For the systems with the highest resolution of the separands (0.25-0.30% PEI) 190,000 plates per meter are observed. The results indicate that the separation selectivity is mainly caused by ion-dipole interactions between the OH-groups of the solutes and the pseudostationary phase.  相似文献   

7.
The viscosity-adjustable property of F127 block copolymer PEO99PPO69PEO99, PEO and PPO being poly(ethylene oxide) and poly(propylene oxide), respectively, was found to be useful for the development of automated capillary electrophoresis (CE). The polymer solution can form a gel-like structure with sieving ability and can also serve as a dynamic coating material, thereby effectively suppressing the electroosmotic flow induced by the ionization of the silanol group on the quartz capillary inner wall. When applied to CE as a separation medium, F127 block copolymer can provide the advantages of high separation resolution, easy injection and replacement of the triblock copolymer solution and convenient capillary column treatment. High reproducibility of DNA electrophoretic migration time in CE by replenishing F127 solution in acid-washed capillary tubings can be achieved. The relative standard deviation of the DNA migration time is less than 2%. In the investigation of F127 concentration and temperature effects on the performance of DNA separation in CE, we have found that the DNA electrophoretic migration behavior in the F127 gel-like solution cannot be described by any one of the existing models.  相似文献   

8.
A dimensionless number, the reduced mobility, mu i, of separand, i, defined by mu i = ueff,i/(Ueff,i + Ueo) (with the specific effective mobility, Ueff,i, and the unspecific electroosmotic mobility, Ueo), permits expressing the effect of the electroosmotic flow (EOF) in capillary zone electrophoresis (CZE) on all relevant separation parameters, such as selectivity, efficiency, and resolution. A detailed discussion is given for the extent of the effect of the EOF on both cations and anions. The gain and loss of separation performance by application of an EOF is described quantitatively by expressions consisting solely of the reduced mobility.  相似文献   

9.
ATP : RNA adenyltransferase, purified from Escherichia coli, was used to add a series of adenosine residues to the 3'-end of MS2RNA. Incubations of the order of a few minutes at 37 degrees C were sufficient for synthesis of a short poly(A) chain that did not appreciably alter the hydrodynamic or electrophoretic properties of MS2 RNA. The size of the poly(A) tails was estimated by gel electrophoresis after prior hydrolysis of the primer RNA with pancreatic ribonuclease. These results were in good agreement with the values calculated on the basis of the relative amount of incorporated AMP. After the addition of a short poly(A) tail, approximately 50% of the treated material binds specifically to an oligo(dT)-cellulose column. The majority of the recovered poly(a)-containing RNA was still intact, as shown by analysis on polyacrylamide gel. After incubations beyond 6 min, slowly sedimenting material, also showing reduced electrophoretic mobility, was formed. Presumably this material corresponds to RNA chains to which long poly(A) tails are linked.  相似文献   

10.
Carboxymethylated-beta-cyclodextrin (CMBCD) in the electrophoretic medium (aqueous 50 mM sodium phosphate, pH 2.5) enhanced the separation using raw fused-silica capillaries in CZE of the four standard proteins: alpha-chymotrypsinogen A, cytochrome c, lysozyme and ribonuclease A. Furthermore, with 20 mM CMBCD in the electrophoretic medium, the cis-trans isomers of angiotensin could be separated at room temperature, whereas the separation of the conformers required subambient temperatures as low as -20 degrees C without CMBCD in the electrophoretic medium [50 mM sodium phosphate (pH 2.5), containing 10% (v/v) methanol]. Addition of heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DMBCD) had no effect on the separation of the above proteins and peptides. The results suggest that in microcolumn separation techniques, certain cyclodextrin additives can be useful selectivity enhancers.  相似文献   

11.
Charged carboxymethyl-beta-cyclodextrin was successful in the capillary electrophoretic separation of a series of tricyclic antidepressants. The cyclodextrin alone was successful in the separation of carbamazepine, protriptyline, desipramine, clomipramine, and opipramol using a 3-(trimethoxysilyl)propyl methacrylate capillary coating to reduce the electroosmotic flow. The ideal buffer pH was found to be in the range of 6-7 and the ideal cyclodextrin concentration to be 10 mM. All nine antidepressants were resolved using the charged cyclodextrin in the micellar electrokinetic chromatography (MEKC) mode with sodium dodecyl sulfate as the surfactant. Neither the cyclodextrin nor the surfactant alone were successful in resolving the whole series of compounds under investigation but a combination of both produced the separation. Separations were performed on a linear polyacrylamide coated capillary. The ideal pH of the buffer was in the range of 5-7.  相似文献   

12.
A sensitive and selective liquid chromatographic assay for determining the non-peptide endothelin A receptor antagonist PD 156707 (I) in rat plasma has been developed and validated. The analyte was isolated from matrix by solid-phase extraction. Liquid chromatographic separation was achieved isocratically on a 3.2 mm I.D., ODS column with a mobile phase of acetonitrile-ammonium phosphate (50 mM, pH 3.5) (44:56, v/v). Column effluent was monitored fluorometrically. Peak-height ratios (analyte/IS) were proportional to I concentrations in rat plasma from 25 to 1000 ng/ml. Assay precision and accuracy for I, based on quality controls, was 9.5% relative standard deviation, with relative error of +/- 6.5%. The quantitation limit was 25 ng/ml for a 200-microliters sample aliquot.  相似文献   

13.
The migration regimes and the separation selectivity of linear poly(styrenesulfonates) (PSS) were investigated in solutions of linear polymeric hydroxyethylcellulose (HEC). Variable parameters were the number of PSS monomer units (in the range of 25-6520), HEC concentration (below and above the entanglement threshold), molecular mass of HEC (between 35900 and 438000 Da) and electric field strength (from 190 to 1140 V/cm). Besides those regimes which are known for migration of polyelectrolytes in physical networks (Ogston sieving, reptation without and with orientation), the observed separation below the entanglement threshold indicates an effect of solute-chain interactions similar to that observed for the separation of double-stranded DNA. From the dependence of the separation selectivity on HEC concentration and molecular weight it was found that both parameters increase the separation. The selectivity of the solutions of higher concentrated low molecular HEC was compared to lower concentrated high molecular HEC, which has a similar bulk viscosity, and therefore obeys comparable peak dispersion due to thermal broadening. At high field strengths (preferably used in capillary electrophoresis) the former gave better separation only for shorter PSS molecules. For separation of longer PSS molecules, only high molecular HEC is applicable due to the deformation of the low molecular matrix by large analyte molecules.  相似文献   

14.
The separation of synthetic dyes, used as color additives in cosmetics, by micellar electrokinetic capillary chromatography (MEKC) is described in this study. The separation of seven dyes, namely eosine, erythrosine, cyanosine, rhodamine B, orange II, chromotrope FB and tartrazine has been achieved in about 3 min in an untreated fused silica capillary containing as background electrolyte a 25 mM tetraborate/phosphate buffer, pH 8.0, and 30 mM sodium dodecyl sulfate. The electrophoretic method exhibits precision and relatively high sensitivity. A detection limit (LOD, signal/noise = 3) in the range of 5-7.5 X 10(-7) M of standard compounds was recorded. Intra-day repeatability of all the studied dye determinations (8 runs) gave the following results (limit values), % standard deviation: 0.24-1.54% for migration time, 0.99-1.24% for corrected peak areas, 0.99-1.24% for corrected peak area ratio (analyte/internal standard) and 1.56-2.74% for peak areas. The optimized method was successfully applied to the analysis of a lipstick sample where eosine and cyanosine were present.  相似文献   

15.
DNA fragments of 1 to 10 kbp in length were separated by capillary electrophoresis (CE), using poly(ethylene oxide) (PEO) solutions in the presence of electroosmotic flow. The technique requires filling the capillary with the polymer solution by means of electroosmotic flow (EOF). Separation times of 6-7 min in PEO solutions ranging from 0.3 to 8 x 10(6) Mr at 375 V/cm were sufficient to separate the 11 components of the dsDNA ladder (0.5 to 10 kbp) by size. The migration behavior of the double-stranded (ds)DNA fragments, interpreted by "Ferguson plot analysis", in the system is indistinguishable from that previously reported for capillary zone electrophoresis (CZE) in a polyacrylamide solution without EOF. Potential advantages of conducting CZE using polymer solutions in the presence of EOF are: (i) Possibility of long migration times on short columns; (ii) possibility of introducing relatively viscous, high Mr polymer solutions into narrow capillaries; (iii) possibility of establishing polymer concentration gradients in capillaries; (iv) possibility of concentrating the starting zone by balancing electrophoretic migration and electroosmotic transport.  相似文献   

16.
王恒  石慧  徐师  庄梅  邢帆  姜郁 《冶金分析》2019,39(4):60-64
银精矿中水溶性氟会随雨水的冲刷进入生物圈,直接对土壤、水体、大气、人类健康产生危害。实验提出超声提取-离子色谱法测定银精矿中水溶性氟,为银精矿中水溶性氟的检测及后续环境影响评估提供重要的技术支撑。称取0.2g样品(过150目筛),加入30mL水,在40℃时超声提取20min后,使用阴离子交换柱进行分离,使用碳酸钠-碳酸氢钠混合溶液作为淋洗液进行淋洗,洗脱时间为25min,通过电导检测器进行F-检测。F-质量浓度在0.5~10mg/L范围内与对应的峰面积呈线性关系,校准曲线线性相关系数为0.9998;方法检出限为0.062mg/L,测定下限为0.21mg/L。按照实验方法测定两个银精矿中水溶性氟,测定结果的相对标准偏差(RSD,n=6)为3.8%和4.3%;加标回收率为92%~102%。  相似文献   

17.
Synthetic musk fragrances are common personal care product additives and wastewater contaminants that are routinely detected in the environment. This study examines the presence of eight synthetic musk fragrances [7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), 1,3,4,6,7,8-hexahydro-4,6,6,7,8-hexamethylcyclopenta-γ-2-benzopyran (HHCB), 5-acetyl-1,1,2,6-tetramethyl-3-iso-propylindane (ATII), 4-acetyl-1,1-dimethyl-6-tert-butylindane (ADBI), 6-acetyl-1,1,2,3,3,5-hexamethylindane (AHMI), 6,7-dihydro-1,1,2,3,3,-pentamethyl-4-(5H)-indanone (DPMI), 1-tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene (musk xylene), and 4-tert-butyl-3,5-dinitro-2,6-dimethylacetophenone (musk ketone)] in source water and the removal of these compounds as they flow through a Midwestern conventional drinking water plant with lime softening. The compounds were measured in water, waste sludge, and air throughout the plant. HHCB and AHTN were detected in 100% of the samples and at the highest concentrations. A mass balance on HHCB and AHTN was performed under warm and cold weather conditions. The total removal efficiency for HHCB and AHTN, which averaged between 67–89%, is dominated by adsorption to water softener sludge and its consequent removal by sludge wasting and media filtration. Volatilization, chlorine disinfection, and the disposal of backwash water play a minor role in the removal of both compounds. As a result of inefficient overall removal, HHCB and AHTN are a constant presence at low levels in finished drinking water.  相似文献   

18.
A capillary electrophoresis (CE) method was developed for the stereoselective determination of the non-steroidal anti-inflammatory drug (NSAID), S-naproxen, in tablets. Several beta-cyclodextrin derivatives (CDs) were tested as chiral selectors, including sulfobutyl-beta-CD (SBCD), carboxymethyl-beta-CD (CMCD), dimethyl-beta-CD (DMCD) and trimethyl-beta-CD (TMCD), in a phosphoric acid/triethanolamine pH 3 buffer. Under these conditions, the analyte was mainly present in an uncharged form and therefore, the use a neutral CD (DMCD or TMCD) alone could not lead to enantiomeric separation. On the contrary, by addition of a charged CD (SBCD or CMCD) to the running buffer, giving the analyte enantiomers an adequate mobility, chiral resolution could be achieved, although the resolution values obtained in this case were not quite satisfactory (Rs < 1.5). Dual systems, based on the use of mixtures of charged and neutral CDs, were then investigated. The SBCD/TMCD system was found to be particularly well suited to the enantioseparation of naproxen and after optimisation of the concentrations of both CDs, a resolution value of 5.4 could be obtained. The method was validated for the determination of R-naproxen (enantiomeric impurity) in the 0.1-2% range, using the racemic mixture of the analyte. A second validation was performed in the 50-150% range for the quantitation of S-naproxen. In both cases, good results with respect to linearity, precision and accuracy were obtained.  相似文献   

19.
An esterase catalyzing the hydrolysis of acetyl ester moieties in poly(vinyl alcohol) was purified 400-fold to electrophoretic homogeneity from the cytoplasmic fraction of Pseudomonas vesicularis PD, which was capable of assimilating poly(vinyl alcohol) as the sole carbon and energy source. The purified enzyme was a homodimeric protein with a molecular mass of 80 kDa and the isoelectric point was 6.8. The pH and temperature optima of the enzyme were 8.0 and 45 degrees C. The enzyme catalyzed the hydrolysis of side chains of poly(vinyl alcohol), short-chain p-nitrophenyl esters, 2-naphthyl acetate, and phenyl acetate, and was slightly active toward aliphatic esters. The enzyme was also active toward the enzymatic degradation products, acetoxy hydroxy fatty acids, of poly(vinyl alcohol). The K(m) and Vmax of poly(vinyl alcohol) (degree of polymerization, 500; saponification degree, 86.5-89.0 mol%) and p-nitrophenyl acetate were 0.381% (10.6 mM as acetyl content in the polymer) and 2.56 microM, and 6.52 and 12.6 mumol/min/mg, respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate at a concentration of 5 mM, which indicated that the enzyme was a serine esterase. The pathway for the metabolism of poly(vinyl alcohol) is also discussed.  相似文献   

20.
The effect of an additive (Brij 35) on the mobilities of a group of porphyrin acids is quantitatively characterized based on a 1:1 dynamic complexation model. Varying additive concentration shifts the equilibrium and changes the viscosity of the background electrolyte. The equilibrium constant, the electrophoretic mobility of the free analyte, and the electrophoretic mobility of the complex are identified as the parameters necessary to describe the analytes' migration behavior. Several statistical methods for obtaining these parameters are discussed. The equilibrium constants and complex mobilities are calculated using three different linear regression methods. The weighted y-reciprocal method was preferred because it gives smaller error, and the data points are evenly distributed along the concentration axis. These values are confirmed using a nonlinear regression to ensure that the proper weighting was used in the linear regression plots. The parameters are then used to predict the apparent mobilities of the analytes over the entire additive concentration range, allowing the optimum separation conditions to be identified. For disc-like molecules, such as porphyrins, the mobility is determined by the orientation of the molecule in an electric field, in addition to their size and charge. The strength of binding between the porphyrins and Brij 35 depends on the number of binding sites and the solvation shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号