首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High-temperature superconducting (HTS) coils are key parts of many large-scale AC applications, such as transformers, superconducting magnetic energy storage, and motors. The estimation of AC losses of pancake coils is necessary for optimizing the design of HTS devices and cryogenic systems. To speed up the computation of AC losses, the numerical model of an infinitely long HTS stack is often utilized. An HTS stack is a good approximation of the circular coil only if the coil radius is sufficiently large, since AC losses will exhibit a stronger asymmetry along the radial direction for small values of coil radii. To assess the validation of an infinitely long stack approximation, the comparisons of AC losses between infinitely long stacks and circular coils with different radii are presented. The turn number varies from 10 to 80. We find that the AC losses of HTS circular coils will gradually increase to the same value as an infinitely long stack with increasing coil radii. A new parameter is proposed to quantitatively describe the correctness of infinitely long stack approximation. Finally, a method of AC loss estimation of HTS pancake coils is proposed.  相似文献   

2.
A model coil for 40-T hybrid magnet superconducting outsert magnet has been constructed and tested at the High Magnetic Field Laboratory, Chinese Academy of Sciences. The model coil was wound with Nb3Sn cable-in-conduit conductor (CICC) cabled in a 316LN jacket cooled with supercritical helium. The model coil alone can produce about 4 T maximum magnetic field with an operating current of 14 kA. The model coil, in combination with 7.57-T NbTi background coil, can produce 11.5 T central field at 14 kA. During the test campaigns, a fast discharge was triggered by a dump resistor of 3.6 mΩ to evaluate the thermal-electromagnetic behavior of the model coil. In order to avoid a quench of the background coil, no current was exerted on the background coil through a power supply during the fast discharge of the model coil. The test results show that the central magnetic field is not scaled proportionally to the current decay of the model coil. The circuit model gives excellent results compared with the measured ones for the central magnetic field evolution as a function of time in this paper. For the thermal-hydraulic behavior during the fast discharge, the maximum temperature at the inlet simulated by the 1-D Gandalf code gives excellent agreement results compared with the measured ones with the conductor coupling time constant of 63 ms.  相似文献   

3.
Numerical simulation of AC losses in superconductors with gaint flux creep was carried out based on the collective creep model of the vortex glass. Influence of physical parameters, including frequency (f) and the amplitude (B ac) of AC field, current density distribution (j), DC field (B d), and temperature (T) on AC losses was studied based on a unified method and the Maxwell equations. The frequency-dependent AC losses is the most important among the results which differ from the static models. Also, AC losses derived in the flux creep state are larger than those in the critical-state when the sample is only partly penetrated by the field, which is the second difference between the flux creep model and the static models. Moreover, the dependence of AC losses on B ac are derived and compared with that based on the Bean model. Preliminary comparison with experiments showed that the procedure could give qualitative understanding and estimation of AC losses in superconductors with giant flux creep.  相似文献   

4.
When the quenching occurs in a superconducting coil, excessive joule heating in normal area may damage the coil. It is necessary to detect quenching in the coil as soon as possible and discharge the magnetic energy stored in the coil. Therefore, we propose a superconducting coil protection system based on an active power method. The system is highly resistant to the noise and does not require cancel voltage taps, so it is useful for both AC and DC coils. We have presented the effectiveness of the system using some test coils cooled in LN2 or LHe. However, we have not discussed the effectiveness of the proposed system for helium-free cryocooled magnets, in which a larger temperature rise occurs after quenching than in liquid-cooled magnets. In this paper, we verify the effectiveness and practicality of the proposed system through coil protection tests for a cryocooled Nb3Al LTS coil.  相似文献   

5.
Magnetization AC loss measurements have been performed by the calibration free method on mono, 19 filaments un-twisted and 19 filaments twisted MgB2 superconducting wires with magnetic fields perpendicular to the wire axis at various frequencies and temperatures between 24 and 40 K. AC losses were also calculated based on critical state model for mono-filamentary Nb sheathed MgB2 wire with conditions corresponding to experiments. Good agreement is observed between model and experimental data. AC losses go through a peak when the wire was cooled below T c. In terms of AC magnetization losses, the twisted wire has the minimum losses in order of 10?5 J/m at 30 K in AC magnetic field with 20 mT amplitude.  相似文献   

6.
Inexpensive superconducting wires with low AC losses would open up for a large superconductor market in AC electrical power applications. One candidate for this market is the MgB2 conductor. In the development of an AC optimized superconductor, high-quality measurements of the AC losses under application-like conditions must be available. This article describes an apparatus built for this purpose. The measurement method is calorimetric. The temperature increase of the superconductor sample is measured and compared to the temperature increase due to a heater with known heat input. The system is designed for measurements of losses due to magnetic fields combined with transport currents. Results from tests verifying the capabilities of the system are given, as well as from initial AC loss measurements on a tape-shaped MgB2 superconductor.  相似文献   

7.
AC losses in stator windings of fully superconducting motors with an MgB2 wire are numerically evaluated by means of a finite-element method using edge elements for a self-magnetic field. The physical properties of the MgB2 wire for numerical calculations are obtained from the corresponding experiments with an existing wire. It is assumed that the voltage?Ccurrent characteristics of the MgB2 wire are given by Bean??s critical-state model, in which the critical current density is independent of the local magnetic field. The influences of core slot size and turn number of windings on the AC losses are discussed quantitatively toward the optimum design of the stator winding with the MgB2 wire.  相似文献   

8.
A single pancake coil without turn-to-turn insulation was tested in this paper to investigate the transient responses under different situations. We performed charging and discharging test, AC current test, and regional quench emulation test on the non-insulated (NI) coil. The experimental test results show a significant time delay for charging and discharging characteristics of NI coil and can be validated by a simple proposed equivalent electrical circuit. Under the AC operating current, the NI coil can bypass nearly all the AC current from the coil spiral path to the radial path such that it is not possible for NI coil to store or be affected by the AC magnet field. Additionally, while carrying AC current, the AC loss dissipation of NI coil is inversely proportional to the frequency of the AC operating current. When a regional quench occurs, the NI coil can bypass the current in the regional quench zone to avoid further temperature accumulated and protect the NI coil itself.  相似文献   

9.
Superconducting coils in AC application, such as in the stator of superconducting motors, have losses which warm up the coil and so limit the performance. Good thermal contact between the coil and the cooling agent is important. In this research we investigate the possibility of cooling the coils by a cryoliquid, such as liquid hydrogen or liquid nitrogen, flowing through capillaries in thermal contact with the coils.  相似文献   

10.
AC losses in twisted and untwisted BSCCO multifilamentary superconducting tapes with Ag matrix developed in DAPAS program were measured by an electrical method. Magnetization and transport losses were measured by a pick-up coil and by a voltage taps. Total AC loss during simultaneous application of AC transport current and an AC transverse magnetic field was given by the sum of the magnetization and transport losses measured during this simultaneous application. The magnetization loss without transport current of untwisted and twisted tapes was measured first to evaluate the effect of twisting to decouple filaments. Then, the total AC loss of the twisted tape was measured in transverse magnetic fields with various amplitudes and orientations, while the amplitude of the transport current was fixed. The measured total AC loss in a parallel transverse magnetic field was compared with some theoretical models to study the detailed characteristics of the measured total AC loss of the sample.  相似文献   

11.
Inside the qualifying test programme, supporting the "Tore Supra" Tokamak design, a reduced scale model of coil was fabricated by an industrial firm and fully tested. This model coil is provided with the same features as those retained for the complete magnet and is built according to the same design; in particular the Nb-Ti mixed matrix monolithic conductor is cooled by a pressurized superfluid helium bath, supplied from a model of the envisaged complete cryogenic system. Three main objectives have been assigned to this test: operation of the cryogenic system, stability of the superconductor winding under high mechanical stresses, mainly shear, and simulation of coil quench conditions. For this purpose, the model coil (outside bore 0.8 m) is located inside a 4 T magnet, an hydraulic jack applies a 1 MN force along a coil diameter. Operation of the model coil has been found highly stable, under the conditions of applied field and forces, a coil transition can be induced by an electrical heater only when the superfluid bath temperature is close to Tλ. The 1.8 K cryogenic system provides a useful calorimetric measure of total losses induced inside the winding; its operation has been quite simple and reliable, permitting a sure extrapolation to a much larger size.  相似文献   

12.
The high field magnet (HFM) project, within the European project EuCARD, aims at constructing an Nb3Sn high field accelerator magnet, the Fresca 2 magnet. This magnet is to serve as a test bed for future high field magnets and to upgrade the vertical CERN cable test facility. Fresca 2 is a block coil type magnet designed to produce 13 T at 1.9 K. To calculate the temperature margin and the evolution of the temperature due to a quench event within the magnet, we developed a 3D model implemented in ANSYS-CFX® software. This model is an extension of the 2D simplified “two-fluid model” proposed by Kitamura et al. with conjugate heat transfer and Kapitza resistance. This model is derived from the original two-fluid model and consisted of a conventional continuity equation, a modified momentum equation for the total fluid and an energy equation including the Gorter-Mellink internal convection term modeling the turbulence regime. The paper presents the model, the numerical schemes, the assumptions taken for the calculations and the results of the simulation obtained for the temperature evolution due to AC losses and due to quench heating within the magnet structure.  相似文献   

13.
H. Noji 《低温学》2009,49(1):34-38
The self-field losses of the one phase of high-TC superconducting (HTS) transmission cable are calculated by the electric circuit (EC) model. The one phase of HTS cable is constructed by the former of fine-strands copper rod, HTS conductor with four superconducting layers, the insulation made by polypropylene laminated paper, and HTS shielding with two superconducting layers, which was fabricated by Sumitomo Electric Industries (SEI). The length of the cable is 30 m. Each HTS layer comprises BSCCO tapes. The current-dependent resistance of HTS layers in EC model is estimated on the base of Norris expressions for ellipse. The calculated losses are compared with the experimental results measured by 4-terminal method by SEI. The calculation of alternating current (AC) losses, a summation of the self-field losses in HTS layers and the eddy-current losses in the former, is almost equal to the measurement at wide transport-current range below the lowest value of the layer critical current. This result indicates that the numerical calculation by EC model is quite reliable. The minimum AC loss is also calculated by obtaining the optimum helical-pitch lengths of HTS layers at transporting 1 kArms. The minimum loss is 36% lower than the loss of HTS cable designed by SEI at the transport current value. In HTS cable with the optimum helical-pitch lengths, the calculation of the layer currents are not uniform in HTS conductor but are almost uniform in HTS shielding, which is contradict to SEI’s one. It is considered that the numerical calculation by EC model is useful to obtain the optimum helical-pitch lengths in HTS cable with the minimum AC loss.  相似文献   

14.
In this paper, we present an electric quench detection method without a central voltage tap which may cause the short-circuit of the lead-wires from the voltage taps in the quench detection of a large AC superconducting coil. In this method, an inductive voltage detection coil is used instead of the central voltage tap. The inductive voltage detection coil is electrically insulated from a superconducting coil and therefore the lead-wires do not break down. Through the quench detection tests for a Bi-2223/Ag HTS coil, we show the feasibility of the proposed method for detecting the quench of the large AC superconducting coil.  相似文献   

15.
International Thermonuclear Experimental Reactor (ITER) is a full superconducting coil tokamak. The tail is an important component of Poloidal Field (PF) coil, of which the main functions are to provide the electrical isolation and transfer the longitudinal load from the last turn to the last-but-one turn. The paper focuses on an optimized mechanical structure of PF6 coil tail, which is made up of two main parts. One was welded to the last turn and the other was welded to the last-but-one turn. Both of them were connected by the mechanical coupling. The electrical isolation between the two parts was maintained by a strap made of insulating composite. In addition, as the PF6 coil is operated under the cyclic electromagnetic load during the tokamak operation, the fatigue property of the tail should be assessed and qualified at low temperature. Moreover, taking into consideration the complexity of the insulation winding process which is performed in a confined space, the wrapping process of the insulation needs to be established. Meanwhile, the high voltage (HV) tests of the tail insulation, including the direct current (DC) and alternating current (AC) tests, need to be assessed before and after the fatigue test.In this paper, a fully bonded PF6 coil tail partial mock-up (not including the weld of the tail to the last conductor turn) was designed and manufactured by simulating the actual manufacturing processes. In addition, the fatigue tests on the sample were carried out at 77 K, and the results showed the sample had good and stable fatigue properties at cryogenic temperature. The HV tests before and after the fatigue test, also including the final 30 kV breakdown DC test after the fatigue test, were carried out. The test results satisfied the requirements of ITER and were discussed in depth. Finally, the sample was destructively inspected to validate the integrity of the insulation by mechanical cross sectioning, and no voids and cracks were observed. Therefore it can be verified from the test results that the designed PF6 coil tail has good comprehensive properties, which can be applied to the formal production of the PF6 coil.  相似文献   

16.
The design and fabrication of the model coil for the 40 T hybrid superconducting outsert has been completed at High Magnetic Field Laboratory, Chinese Academy of Sciences (CHMFL). ??Wind-and-React?? method is adopted to ease subsequent handling and assembly and to protect the brittle material. The model coil which is made of Nb3Sn CICC will undergo a high temperature diffusion reaction according to the optimum heat treatment schedule for the Nb3Sn/RRP? superconducting strand. The facility specialized in the heat treatment of Nb3Sn superconducting coils has been established in CHMFL, and several kinds of monitoring instruments are equipped to monitor impurities in the argon gas during heat treatment. At present, the heat treatment of the model coil has been finished and the performance test results of the model coil meet our requirements. This paper mainly presents the introduction of the heat treatment facility, details of heat treatment process for the model coil, and some simulations of the states during heat treatment.  相似文献   

17.
A double pancake coil was designed and manufactured with a 36-m long Bi-2223/Ag tape. The tape was insulated by 25 μm thick Kapton tapes, which can stand a voltage of 400 Vrms in liquid nitrogen. The whole double pancake was impregnated with epoxy resin. AC over-current experiments of the coil were performed by applying constant AC voltages to the two terminals of the coil and lasted for 3 s. The experiment began first at a lower voltage of 33.6 Vrms, and then the voltage stepped up till the coil was burned out at the pulse voltage of 202.7 Vrms. All of the experiments were carried out with the coil dipped in liquid nitrogen. The current waveforms were measured. The impedance and resistance characters of the HTS coil with its over pulse currents were analyzed from the experiment results. At the end of this paper, some conclusions derived from the experiment results and their analyses are given, which are helpful for the safety operating of the HTS coils in power applications.  相似文献   

18.
The cohesive element approach is proposed as a tool for simulating delamination propagation between a facesheet and a core in a honeycomb core composite panel. To determine the critical energy release rate (G c) of the cohesive model, Double Cantilever Beam (DCB) fracture tests were performed. The peak strength (c) of the cohesive model was determined from Flatwise Tension (FWT) tests. The DCB coupon test was simulated using the measured fracture parameters, and sensitivity studies on the parameters for the cohesive model of the interface element were performed. The cohesive model determined from DCB tests was then applied to a full-scale, 914×914 mm (36×36 in.) debond panel under edge compression loading, and results were compared with an experiment. It is concluded that the cohesive element approach can predict delamination propagation of a honeycomb panel with reasonable accuracy.  相似文献   

19.
Y.D Chung  I Muta  T Nakamura 《低温学》2004,44(11):839-844
This paper has described the characteristics of a stationary linear type magnetic flux pump newly developed this time. The linear type flux pump aims to compensate a little decremental persistent current of the HTS magnet in NMR and MRI systems. The flux pump mainly consists of DC bias coil, 3-phase AC coil and Nb foil. Analytical results by the FEM are proved to nearly agree with experimental ones. In the experiment, it has been investigated that the flux pump can effectively charge the current in the load coil of 1.3 mH for various frequencies in 150 s under two following conditions: (1) DC bias of 10 A and AC of 4 Arms, (2) DC bias of 10 A and AC of 5 Arms. The maximum magnitudes of initial increasing rate of pumping current and load magnet voltage are: (1) 0.2 A/s and 25 mV and (2) 0.22 A/s and 34 mV, respectively.  相似文献   

20.
In order to characterise the mechanical behaviour of sandwich structures, which combine an interlayer of a woven wire mesh between two thin walled sheet metals, creep tests at 650, 680 and 750 °C were carried out on sheet metals made of the nickel based alloy Nicrofer 6025 HT (2.4633). In addition to the tests the creep behaviour was simulated by a model, which considers the creep rate as a function of the applied stress σ and the internal deformation resistance including an internal back stress σi and a particle resistance σP. The damage is included by a damage parameter D, which converges to “one” with increasing damage. A concluding comparison with the creep test results shows that the model is able to describe the creep behaviour of the investigated sheet metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号