首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Er-doped 12CaO·7Al2O3 (C12A7:Er) powders were prepared using the sol-gel method followed by annealing inorganic precursors. X-ray diffraction (XRD), Raman and absorption spectra revealed that Er ions existed and substituted Ca2 lattice site in C12A7. The photoluminescence of C12A7:Er at room temperature was observed in the visible and infrared region using 488 nm (2.54 eV) Ar line as excitation source, respectively. The sharp and intense green emission bands with multi-peaks around 520 nm and 550 nm correspond to the transitions from the excited states 2H11/2 and 4S3/2 to the ground state 4I15/2, respectively. Furthermore, red emission band around 650 nm was also observed. It was attributed to the electronic transition from excited states 4F9/2 to the ground state 4I15/2 inside 4f-shell of Er3 ions. The intensive infrared emission at 1.54μm was attributed to the transition from the first excited states of 4I13/2 to the ground state (4I15/2). The temperature dependent photoluminescence of infrared emission showed that the integrated intensity reached a maximum value at near room temperature. The forbidden transitions of intra-4f shell electrons in free Er3 ions were allowed in C12A7 owing to lack of the inversion symmetry in the Er3 position in C12A7 crystal field. Our results suggested that C12A7:Er was a candidate for applications in Er-doped laser materials, and full color display.  相似文献   

2.
The optical properties of Er3+-doped and Yb3+/Er3+ co-doped 12CaO·7Al2O3 (C12A7) poly-crystals, synthesized by high temperature solid state method, were investigated in detail. For Er3+-doped and Yb3+/Er3+ co-doped C12A7 poly-crystals, two main emission bands centered around 530/550 nm (green) and 660 nm (red) were observed under 980 nm diode laser excitation via an up-conversion process. The intensity of green up-conversion emission had a strong increase in Er3+ (1.0 mol.%, 1.5 mol.%, 3.0 mol.%), and the intensity ratio of red to green up-conversion emission had an increase in Yb3+ (1.0 mol.%, 2.0 mol.%, 10. 0 mol.%)/Er3+ (fixed at 1.0 mol.%). This detailed study of the up-conversion processes allowed us to identify the dominant up-conversion mechanisms in Er3+-doped and Yb3+/Er3+ co-doped C12A7 poly-crystals.  相似文献   

3.
A novel synthesis method for hexagonal(β)-phase NaYF4:Er nano-crystals(NCs)which showed up-conversion(UC)from infrared to visible spectral region was developed.The NaYF4:Er NCs were synthesized in oleic acid(OA)and 1-octadecene(ODE)with Y2(CO3)3· xH2O,Er2(CO3)3· xH2O,Na2CO3 and NH4F as precursors.This proposed method was simple and less toxic compared with generally used method so far.The XRD results showed that the molar ratio of OA/ODE and the temperature were key factors for phase control of NaYF4:Er NCs.The UC emission spectra were obtained with the emission wavelength at about 980 nm(4I11/2→4I15/2),800 nm(4I9/2→4I15/2),660 nm(4F9/2→4I15/2)and 540 nm(4S3/2→4I15/2)from Er3+ ions,by excitation wavelength of 1550 nm.The slope values,n,in the pump-power dependence,showed that the emission at 980 and 800 nm were generated by 2-step UC and at 660 nm and 540 nm were 3-step UC.The optical process for the UC excitation was discussed.  相似文献   

4.
A kind of Er3+-Yb3+ co-doped natrium yttrium fluoride nanometer-phosphor sensitive to 980 nm was synthesized by the low-temperature combustion synthesis method, which expanded the application range of the low-temperature combustion synthesis (LCS) method which is always used in the synthesis of oxides and compound oxides. The synthesis conditions were optimized with orthogonal experiments and the optimum technological parameters were obtained. Intense upconversion emissions at 522, 540 and 653 nm corresponding to the 2H11/2, 4S3/2, and 4F9/2 transitions to the 4I15/2 ground state were observed when excited by continuous wavelength (CW) laser radiation at 980 nm. The effect of the carbamide amount on the phase formation and the luminescence intensity was analyzed. The average particle size of the sample was 30-40 nm.  相似文献   

5.
Y2O3: Er^3+, Yb^3+ nanoparticles were synthesized by a homogeneous precipitation method without and with different concentrations of EDTA 2Na. Upconversion luminescence spectra of the samples were studied under 980 nm laser excitation. The results of XRD showed that the obtained Y2O3:Er^3+,Yb^3+ nanoparticles were of a cubic structure. The average crystallite sizes calculated were in the range of 28-40 nm. Green and red upconversion emission were observed, and attributed to ^2H11/2,^4S3/2→^4I15/2 and ^4F9/2→^4I15/2 transitions of the ion, respectively. The ratio of the intensity of green emission to that of red emission drastically changed with a change in the EDTA 2Na concentration. In the sample synthesized without EDTA, the relative intensity of the green emission was weaker than that of the red emission. The relative intensities of green emission increased with the increased amount of EDTA 2Na used. The possible upconversion luminescence mechanisms were discussed.  相似文献   

6.
Er~(3+)-modified 0.68 Pb(Mg_(1/3)Nb_(2/3))O_3-0.32 PbTiO_3(PMN-32 PT) single crystals were grown by using the flux method. The growth mechanism of the crystal and influences of Er~(3+) ions on phase structure,electrical and optical properties were investigated. Results reveal that the crystals are still pure perovskite structure with Er3+ ions doping, but lattice enlarges slightly. The coercive electric field is increased from 4.83 to 6.37 kV/cm for [100]-oriented crystals comparing to undoped PMN-32 PT single crystals.Moreover, the crystal exhibits upconversion emission properties. Green(531 and 552 nm) and red(670 nm) emission bands are recorded under the excitation of 980 nm diode laser, which correspond to the ~2 H_(11/2)→~4 I_(15/2), ~4 S_(3/2)→~4 I_(15/2) and ~4 F_(9/2)→~4 I_(15/2) transitions of Er~(3+) ions. Our results show the feasibility of using this crystal in photoelectric multifunctional devices.  相似文献   

7.
A series of YNbO4:Bi3+ and YNbO4:Bi3+/Er3+ phosphors were prepared by a conventional high temperature solid–state reaction method. The results of XRD and Rietveld refinement confirm that monoclinic phase YNbO4 samples are achieved. The down-/up-conversion luminescence of Er3+ ions was investigated under the excitation of ultraviolet light (327 nm) and near infrared light (980 nm). Under 327 nm excitation, broad visible emission band from Bi3+ ions and characteristic green emission peaks from Er3+ ions are simultaneously observed, while only strong green emissions from Er3+ ions are detected upon excitation of 980 nm. Remarkable emission enhancement is observed in down-/up-conversion luminescence processes by introducing Bi3+ ions into Er3+-doped YNbO4 phosphors. Pumped current versus up-conversion emission intensity study shows that two-photon processes are responsible for both the green and the red up-conversion emissions of Er3+ ion. Through the study of the temperature sensing property of Er3+ ion, it is affirmed that the temperature sensitivity is sensitive to the doping concentration of Bi3+ ions. By comparing the experimental values of the radiative transition rate ratio of the two green emission levels of Er3+ ions and the theoretical values calculated by Judd-Ofelt (J-O) theory, it is concluded that the temperature sensing property of Er3+ ions is greatly affected by the energy level splitting.  相似文献   

8.
The crystal structure and surface morphology of the Er3+/Yb3+/Na+:ZnWO4 phosphors synthesized by solid state reaction method were analyzed by X-ray diffraction(XRD) and field emission scanning electron microscopy(FESEM) analysis.The frequency upconversion(UC) emission study in the developed phosphors was investigated by using 980 nm laser diode excitation.The effect of codoping in the Er3+:ZnWO4 phosphors on the UC emission intensity was studied.The UC emission bands that are exhibited in the blue(490 nm),green(530,552 nm),red(668 nm) and NIR(800 nm) region correspond to the 4F7/24I15/2.2H11/2,4S3/24I15/2,4F9/24I15/2 and 4I9/2→4I15/2 transitions,respectively.The temperature sensing performance of the Er3+-Yb3+-Na+:ZnWO4 phosphors was investigated based on the 2 H11/24I15/2 and 4S3/24I15/2 thermally coupled transitions of the Er3+ions.The photometric study was also carried out for the developed phosphors.  相似文献   

9.
In this work, CaF_2:Ln~(3+)(Ln:Er,Er/Yb)/Nafion composite films were prepared using Nafion as modifications and matrices by dripping method. The composite films were characterized by Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction(XRD) and scanning electron microscopy(SEM). Composite films are transparent and CaF_2:Ln~(3+)(Ln:Er,Er/Yb) nanoparticles are well dispersed in Nafion films.The thicknesses of CaF_2:Er~(3+)/Nafion and CaF_2:Er~(3+),Yb~(3+)/Nafion composite film are about 77 and 73 μm,respectively. The nanoparticles in composite film possess cubic phase. CaF_2:Er~(3+),Yb~(3+)/Nafion composite film has stronger characteristic emission of Er~(3+) around 1530 nm with full width at half-maximum(FWHM) of 73 nm and longer luminescence lifetimes of 22.04 μs(25.03%) and 100.77 μs(74.97%).  相似文献   

10.
BiOCl crystal shows potential as efficient optical host due to its special layered structure. Here,the luminescence properties of the Er~(3+)/Sm~(3+) co-doped BiOCl phosphors as single-phase phosphors were reported. Upon near ultraviolet excitation(NUV, 380 nm corresponding the ~4 I_(15/2)→ ~4 G_(11/2) transition of Er~(3+) ions), the phosphors exhibit the efficient characteristic emissions of Er~(3+) and Sm~(3+) ions simultaneously. The energy transfer(ET) from Er~(3+) to Sm~(3+) ions in the layered crystals has been validated by the variation of emission intensities and decay lifetimes respectively, which is ascribed to be a dipoledipole interaction. By virtue of the ET behavior and increasing Sm~(3+) ion concentration, the enhancing emission intensity of Sm~(3+) and the tunability of emission color from yellowish-green(0.318, 0.420) to white(0.343, 0.347) are realized. The results of our work indicate that the Er~(3+)/Sm~(3+) co-doped BiOCI phosphor has a promising application serving as single component white emitting phosphors for NUV excited WLEDs.  相似文献   

11.
Er~(3+)/Yb~(3+) co-doped phosphate glasses(P_2O_5-Al_2O_3-BaO-BaF_2-K_2O-Er_2O_3-Yb_2O_3) with varying BaF_2 content,were prepared by a conventional melt quenching technique and their spectroscopic properties were examined through the Raman, absorption, emission and decay measurements. Raman spectra(350-1400 cm~(-1)) of the Er~(3+)/Yb~(3+) co-doped phosphate glasses with varying BaF_2 content, were recorded upon laser excitation at 785 nm. Near infrared luminescence spectra were measured in the1400-1600 nm region under 970 nm diode laser excitation and characteristic band was observed at1533 nm corresponding to ~4Ⅰ_(13/2)→~4Ⅰ_(15/2) transition of Er~(3+) ion. The decay curves for the ~4Ⅰ_(13/2) level of Er~(3+)ion, were measured and the lifetime is found to decrease from 7.94 to 7.70 ms when BaF_2 content increases from 0 to 8 mol% and then increases up to 7.83 ms with further increase in BaF_2 content(12 mol%). The emission cross-section.lifetime and figure of merit for the ~4Ⅰ_(13/2)→~4Ⅰ_(15/2) transition of Er~(3+) ion were evaluated and compared to the other host matrices. The upconversion luminescence was measured and intense red emission was observed for all the studied samples.  相似文献   

12.
Er3+ doped potassium gadolinium molybdate (KGM) phosphor with sensitizer Yb3+ ion was synthesized by the Pechini method using citric acid and ethylene glycol. The crystallization processes of the phosphor precursors were characterized by X-ray diffraction (XRD) and thermogravimetry-differential scanning calorimetry (TG-DSC), which indicated that ultrafine uniform crystallites of KGM:Er,Yb were obtained by sintering the precursors at above 650 ℃ for 5 h. Upconversion luminescence (UL) spectra of the samples ...  相似文献   

13.
Er3+-Tm3+-Yb3+ tri-doped BaMoO4 phosphors were synthesized by co-precipitation technique and characterized by X-ray diffraction analysis, absorption study and field emission scanning electron microscopy analysis. Upconversion as well as downconversion luminescence studies were performed by using near infrared (980 nm) and ultraviolet (380 nm) excitations. Energy level diagram, pump power dependence and colour coordinate study were utilized to describe the multicolor upconversion emission properties. Under single 980 nm diode laser excitation the dual mode sensing behaviour is realized via Stark sublevels and thermally coupled energy levels of the Tm3+ and Er3+ ions in the prepared tri-doped phosphors. A comparative fluorescence intensity ratio analysis for integrated emission intensities arising from the Stark sublevels {1G4(a) and 1G4(b)} and thermally coupled energy levels {2H11/2 and 4S3/2} of the Tm3+ and Er3+ ions, respectively was carried out in the prepared tri-doped BaMoO4 phosphors. The maximum sensitivity for thermally coupled energy levels of the Er3+ and Stark sublevels of the Tm3+ ion was reported. The developed phosphors could be useful in the display devices and optical thermometric applications.  相似文献   

14.
FTIR absorption spectra indicate that H+ can easily enter the crystal structure and form OH-centers in Er:Yb:YCOB and O—H bonds prefer to lie in the a-c plane. Within our current studied concentration level,crystal samples with higher OH-abso rption coefficie nts demonstrate stro nger fluo rescence intensity and longer fluorescence lifetime at 1535 nm. As the stretching vibration energy of OH-group approximately corresponds to the energy gap between the ~4 I_(11/2) and ~4 I_(13/2) levels of Er~(3+), and thus, OH-ions can shorten the fluorescence lifetime of Er~(3+)-~4I_(11/2) level by the phonon-assisted cross-relaxation process between the Er~(3+) and OH-ions. Our curre nt results confirm that a certain conte nt of OH ions can enhance the ene rgy transfer process from Yb~(3+) to Er~(3+) and subsequently promote fluorescence output in 1.5-1.6 μm.  相似文献   

15.
The 2.0 μm emission originating from Ho^3+:^5I7→^5I8 were investigated upon excitation with 808 nm laser diode (LD) transition in Ho^3+/Tm^3+-codoped gallate-bismuth-germanium-lead glasses Energy transfer (ET) process between Tm^3+: ^3F4 level and Ho^3+: ^5I7 level was also discussed. It was noted that the measured peak wavelength and stimulated emission cross-section of Ho^3+-doped bismuth-germanium-lead glasses were -2.02 μm and 5.1×10^-21 cm^2, respectively. Intense emission of Ho^3+ in Tm^3+/Ho^3+-codoped GBPG glass were observed, which resulted from the ET between Tm^3+: ^3F4 and Ho^3+: ^5I7 level upon excitation with 808 nm LD.  相似文献   

16.
Heavy metal glasses doubly doped with Yb3+ and Ln3+ ions(Ln=Er or Tm) were studied. Glass host matrices were limited to lead borate glass and lead germanate glass. Efficient resonant(Yb3+-Er3+) and non-resonant(Yb3+-Tm3+) energy transfer was observed for the studied systems. Near-infrared luminescence spectra at 1.53 μm(Er3+) and 1.9 μm(Tm3+) were detected under excitation of Yb3+ by 975 nm diode laser line. They corresponded to 4I13/2→4I15/2(Er3+) and 3F4→3H6(Tm3+) transitions of rare earth ions, respectively. The unusual large spectral linewidth nearly close to 110 nm for 4I13/2→4I15/2 transition of Er3+ ions in lead borate glass was obtained, whereas long-lived near-infrared luminescence at 1.53 μm was detected in lead germanate glass. Quite different situation was observed for Yb3+-Tm3+ doubly doped glasses. In contrast to lead borate glass, near-infrared(3F4→3H6) luminescence spectra were registered for Tm3+ ions in lead germanate glasses, only. These phenomena strongly depended on stretching vibrations of glass host, which was confirmed by FT-IR spectroscopy.  相似文献   

17.
Through a hydrothermal route, the Er3+and Tm3+co-doped SrYbF5 nanosheets were synthesized. The resulting samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and luminescence spec-tra. Under the excitation of 980 nm laser irradiation, the upconversion emissions of Tm3+ions centered at 474 nm (1G4→3H6), 679 nm (3F2→3H6), 699 nm (3F3→3H6), 803 nm (3H4→3H6) and emissions of Er3+ions centered at 522 nm (2H11/2→4I15/2), 543 nm (4S3/2→4I15/2), 654 nm (4F9/2→4I15/2) were observed. The upconversion emissions of Er3+ions were adjusted by the concentration of Tm3+ions. The energy transfer mechanisms among Er3+-Yb3+-Tm3+in SrYbF5 nanosheets were discussed.  相似文献   

18.
Nd^3+:Cs2NaGdCl6 and Nd^3+, Yb^3+:Cs2NaGdCl6 polycrystalline powder samples were prepared by Morss method E. Under 785 nm semiconductor laser pumping, the upconversion luminescence of Nd^3+ ions in Cs2NaGdCl6 was investigated at room temperature, and three upconversion emissions near 538 nm (Green), 603 nm (Orange), and 675 nm (Red) were observed and assigned to ^4G7/2→^4I9/2, (^4G7/2→^4I11/2; ^4G5/2→^4I9/2), and (^4G7/2→^4I13/2; ^4G5/2→^4I11/2 ), respectively. The dependences of these upconverted emissions on laser power and Nd^3+ ion concentration were investigated, to explore the upconversion mechanism. The effect of doping Yb^3+ ions on the upconversion luminescence of Nd^3+ in Cs2NaGdCl6 was also studied under 785 nm laser excitation. The energy transfer processes were discussed as the possible mechanism for the above upconversion emissions.  相似文献   

19.
The effect of alumina content and heat treatment temperature and time, on microstructure and Er3+ (0.5 mol.%) emission of oxy-fluoride glass-ceramics were investigated in this research. Two values of 1.8 (SA1.8Er0.5) and 2.18 (SA2.18Er0.5) were selected in this re-search for SiO2/Al2O3 ratio. According to DTA results, precursor glasses were heat treated at 630, 660 and 690 °C for 4 h and some glasses were also heat treated at 630 °C for 48 and 72 h. The results indicated that alumina content had significant effect on phase separation and vis-cosity of the glasses. Therefore the size, size distribution, and volume concentration of nano CaF2 crystals which precipitated during the heat treatment depended on alumina content of the glass. Due to the much smaller size of the precipitated CaF2 crystals in the glasses of low alumina content, these samples maintained excellent transparency and had narrower crystal size distribution than the high alumina glasses. The crystal size was increased markedly with the temperature increasing from 630 to 690 °C. On the other hand a slight increase was observed in the crystal size by raising the heat treatment time in both glasses. Results indicated that in low alumina content glass (SA2.18Er0.5) the size of CaF2 nanocrystals was controlled in one order of magnitude. The increase of heat treatment time and temperature led to the incorporation of Er3+ ions into CaF2 crystalline phase, increasing significantly the upconversion intensity. After heat treatment at 690 ℃ for 4 h, atomic force microscope (AFM) re-vealed the development of small crystals with an average size of 80 and 30 nm in SA1.8Er0.5 and SA2.18Er0.5 samples, respectively.  相似文献   

20.
Effective colour modulation of upconversion emissions in lanthanide-doped nanomaterials becomes even more important for fundamental and applied research. Herein, on the one hand, by raising the content of doped Yb3+ from 10 mol% to 50 mol%, a significant increase of the red/green emission ratio from 4.0 to 68.2 is observed in K2NaScF6:Yb/Er nanocrystals. This yellow to red colour change is attributed to the increased cross relaxation between Er3+ and Yb3+ caused by the increased Yb3+ amount, 4S3/2 (Er3+) + 2F7/2 (Yb3+) → 4I13/2 (Er3+) + 2F5/2 (Yb3+). On the other hand, the upconversion green and red emission of K2NaScF6:Yb/Er (20/2 mol%) nanocrystals are intensified 10.6 and 8.8 folds, respectively, after an active shell (K2NaScF6:Yb) is epitaxially grown, which are more effective than the 7.4- and 6.4-fold enhancement from an inert shell (K2NaScF6) growth. Moreover, the shell thickness from 2.85 to 9.5 nm through controlling the molar ratio of shell-precursor to core from 1:2 to 3:1 can be easily realized. This study will provide more opportunities for the application of K2NaScF6:Yb/Ln nanoparticles in varied fields such as theranostics, photovoltaics, and photocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号