首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The evoked potential recorded in the rat piriform cortex in response to electrical stimulation of the olfactory bulb is composed of an early component occasionally followed by a late component (60-70 ms). We previously showed that the late component occurrence was enhanced following an olfactory learning. In the present study carried out in naive rats, we investigated the precise conditions of induction of this late component, and its spatiotemporal distribution along the olfactory pathways. In the anaesthetized rat, a stimulating electrode was implanted in the olfactory bulb. Four recording electrodes were positioned, respectively, in the olfactory bulb, the anterior and posterior parts of the piriform cortex, and the entorhinal cortex. Simultaneous recording of signals evoked in the four sampled structures in response to stimulation of the olfactory bulb revealed that the late component was detected in anterior and posterior piriform cortex as well as in entorhinal cortex, but not in the olfactory bulb. The late component occurred reliably for a narrow range of low intensities of stimulation delivered at frequencies not exceeding 1 Hz. Comparison of late component amplitude and latency across the different recorded sites showed that this component appeared first and with the greatest amplitude in the posterior piriform cortex. In addition to showing a functional dissociation between anterior and posterior parts of the piriform cortex, these data suggest that the posterior piriform cortex could be the locus of generation of this late high amplitude synchronized activity, which would then propagate to the neighbouring regions.  相似文献   

2.
Bursts of beta-frequency (15-35 Hz) electroencephalogram activity occur in the olfactory system during odour sampling, but their mode of propagation within the olfactory system and potential contribution to the mechanisms of learning and memory are unclear. We have elicited large-amplitude beta activity in the rat olfactory system by applying noxious olfactory stimuli (toluene), and have monitored the bursts via chronically-implanted electrodes. Following exposure to toluene, coherent bursts with a peak frequency of 19.8 +/- 0.9 Hz were observed in the olfactory bulb, piriform cortex, entorhinal cortex and dentate gyrus. The timing of the bursts and the phases of electroencephalogram cross-spectra indicate that beta bursts propagate in a caudal direction from the olfactory bulb to the entorhinal cortex. The time delays between peaks of bursts in these structures were similar to latency differences for field potentials evoked by olfactory bulb or piriform cortex test-pulses. Peaks of burst cycles in the dentate region, however, were observed just prior to those in the entorhinal cortex. Surprisingly, power in toluene-induced beta-frequency oscillations was not increased following long-term potentiation induced by tetanic stimulation of the olfactory bulb, piriform cortex and entorhinal cortex. The activity of local inhibitory mechanisms may therefore counteract the effects of synaptic enhancements in afferent pathways during beta bursts. Low-frequency electrical stimulation of the piriform cortex was most effective in inducing coherent oscillatory responses in the entorhinal cortex and dentate gyrus at stimulation frequencies between 12 and 16 Hz. The results show that repetitive polysynaptic volleys at frequencies in the beta band induced by either toluene or electrical stimulation are transmitted readily within the olfactory system. The propagation of neural activity within this frequency range may therefore contribute to the transmission of olfactory signals to the hippocampal formation, particularly for those odours which induce high-amplitude bursts of beta activity.  相似文献   

3.
The present study provides an experimental model of the apoptotic death of pyramidal neurons in rat olfactory cortex after total bulbectomy. Terminal transferase (TdT)-mediated deoxyuridine triphosphate (d-UTP)-biotin nick end labeling (TUNEL), DNA electrophoresis, and neuronal ultrastructure were used to provide evidence of apoptosis; neurons in olfactory cortex were counted by stereology. Maximal TUNEL staining occurred in the piriform cortex between 18 and 26 hr postbulbectomy. Within the survival times used in the present study (up to 48 hr postlesion), cell death was observed exclusively in the piriform cortex; there was no evidence of cell death in any other areas connected with the olfactory bulb. Neurons undergoing apoptosis were pyramidal cells receiving inputs from, but not projecting to, the olfactory bulb. The apical dendrites of these neurons were contacted by large numbers of degenerating axonal terminals. Gel electrophoresis of DNA purified from lesioned olfactory cortex showed a ladder pattern of fragmentation. Inflammatory cells or phagocytes were absent in the environment of degenerating neurons in the early stages of the apoptotic process. The present model suggests that deafferentation injury in sensory systems can cause apoptosis. In addition, olfactory bulbectomy can be used for investigating molecular mechanisms that underlie apoptosis in mature mammalian cortical neurons and for evaluating strategies to prevent the degeneration of cortical neurons.  相似文献   

4.
It has been demonstrated that apoptotic cell death is an active process that is dependent on RNA and protein synthesis. The question remains as to whether neuronal death in adult, mammalian brains can also be demonstrated in vivo to be dependent on protein synthesis. To address this question we have analysed transneuronal death in the piriform (olfactory) cortex. Following unilateral olfactory bulb ablation in young adult rats, layer IIa of the piriform cortex undergoes rapid degeneration, that commences 12 h after ablation and that is almost complete at 48 h. In order to block protein synthesis, three to six subcutaneous injections of the short acting protein synthesis inhibitor anisomycin, were given at 2 h intervals beginning just before the ablation of the olfactory bulb. In other cases a single injection of the long acting protein synthesis inhibitor emetine were made intracerebrally just before or after olfactory bulb ablation. The number of dying cells was then counted in sections through the rostrocaudal extent of the piriform cortex. Both anisomycin and emetine injections markedly reduced the number of pyknotic cells in layer IIa of the piriform cortex after olfactory bulb ablation. The effect of anisomycin was dose-dependent, near lethal doses leading to an almost complete absence of cell death (six injections of 100 mg/kg). As the doses of anisomycin were reduced, more dying cells were observed. Emetine was only effective at near lethal doses (10 mg/kg) and showed a greater capacity to reduce the levels of cell death when injected into structures near the piriform cortex (e.g., accumbens nucleus) than when injected into more distant structures. To further confirm that the cell death observed was due to apoptosis, we analysed sections by tunel staining to demonstrate DNA fragmentation. We found that tunel-positive cells were also always pyknotic, one of the landmarks of apoptosis. The appearance of pyknotic cells labelled by the tunel method demonstrated that the dying cells in the piriform cortex did indeed undergo apoptosis.  相似文献   

5.
Olfaction is impaired in Alzheimer's disease (AD). It was hypothesized that AD would reduce olfactory-evoked perfusion in mesial temporal olfactory (piriform) cortex, where neuropathology begins. Seven AD patients and 8 elderly controls (ECs) underwent olfactory threshold and identification tests and olfactory stimulation during positron emission tomography. Odor identification was impaired in AD, but threshold was not. Olfactory stimulation in ECs activated right and left piriform areas and right anterior ventral temporal cortex. AD patients had less activation in right piriform and anterior ventral temporal cortex but not in the left piriform area. Although orbital cortex did not activate in ECs, there was a significant between-groups difference in this area. Right piriform activation correlated with odor identification. Impaired odor identification likely reflects sensory cortex dysfunction rather than cognitive impairment. Given olfactory bulb projections to the mesial temporal lobe, olfactory stimulation during functional imaging might detect early dysfunction in this region. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
Concentrations of 11 trace elements were determined in 56 control and 98 Alzheimer's disease (AD) olfactory bulb, olfactory tract, olfactory trigone, piriform cortex and amygdala specimens by instrumental neutron activation analysis. Iron and zinc were significantly elevated and bromine was significantly depleted in olfactory regions of AD patients, compared with normal age-matched control subjects. Elevated iron could possibly play a role in neuronal degeneration in AD by enhancing reactive free radical formation.  相似文献   

7.
The sensation and perception of smell (olfaction) are largely dependent on sniffing, which is an active stage of stimulus transport and therefore an integral component of mammalian olfaction. Electrophysiological data obtained from study of the hedgehog, rat, rabbit, dog and monkey indicate that sniffing (whether or not an odorant is present) induces an oscillation of activity in the olfactory bulb, driving the piriform cortex in the temporal lobe, in other words, the piriform is driven by the olfactory bulb at the frequency of sniffing. Here we use functional magnetic resonance imaging (fMRI) that is dependent on the level of oxygen in the blood to determine whether sniffing can induce activation in the piriform of humans, and whether this activation can be differentiated from activation induced by an odorant. We find that sniffing, whether odorant is present or absent, induces activation primarily in the piriform cortex of the temporal lobe and in the medial and posterior orbito-frontal gyri of the frontal lobe. The source of the sniff-induced activation is the somatosensory stimulation that is induced by air flow through the nostrils. In contrast, a smell, regardless of sniffing, induces activation mainly in the lateral and anterior orbito-frontal gyri of the frontal lobe. The dissociation between regions activated by olfactory exploration (sniffing) and regions activated by olfactory content (smell) shows a distinction in brain organization in terms of human olfaction.  相似文献   

8.
Pyramidal cells in piriform (olfactory) cortex receive afferent input from the olfactory bulb as well as intrinsic association input from piriform cortex and other cortical areas. These two functionally distinct inputs terminate on adjacent apical dendritic segments of the pyramidal cells located in layer Ia and layer Ib of piriform cortex. Studies with bath-applied cholinergic agonists have shown suppression of the fast component of the inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of the association fibers. It was previously demonstrated that an associative form of LTP can be induced by coactivation of the two fiber systems after blockade of the fast, gamma-aminobutyric acid-A-mediated IPSP. In this report, we demonstrate that an associative form of long-term potentiation can be induced by coactivation of afferent and intrinsic fibers in the presence of the cholinergic agonist carbachol.  相似文献   

9.
Soman (pinacolymethylphosphonofluoridate), a highly potent, irreversible inhibitor of cholinesterase, causes intense convulsions, neuropathology and, ultimately, death. There is evidence that certain brain structures are selectively vulnerable to the pathological consequences of soman-induced seizures. A working hypothesis is that central nervous system (CNS) structures with the earliest and most severe signs of neuropathology may be key sites for the initiation of the seizures. Fos, the immediate-early gene product, increases rapidly in several animal seizure models. Thus, we reasoned that the earliest brain regions to express Fos might be involved in the initiation and maintenance of soman-induced convulsions. To assess this, rats were injected with a single, convulsive dose of soman (77.7 micrograms/kg, i.m.). The animals were euthanized and processed for immunocytochemical analysis at several time points. Robust Fos expression was seen in layer II of the piriform cortex and the noradrenergic nucleus locus coeruleus within 30-45 minutes. One hour following soman injection, staining was more intense in the piriform cortex layer II and in the locus coeruleus. In addition, Fos was evident in the piriform cortex layer III, the entorhinal cortex, the endopiriform nucleus, the olfactory tubercle, the anterior olfactory nucleus and the main olfactory bulb. By 2 hours, Fos staining was present throughout the cerebral cortex, thalamus, caudate-putamen and the hippocampus. At 8 hours and beyond, Fos expression returned to control levels throughout the CNS except for the piriform cortex and the locus coeruleus which still had robust labeling. By 24 hours, neuropathology was evident throughout the rostral-caudal extent of layer II of the piriform cortex. The rapid induction of Fos in the piriform cortex and the locus coeruleus, taken together with previous anatomical, eletrophysiological and neurochemical studies, suggests that prolonged, excessive exposure to synaptically released acetylcholine and norepinephrine triggers the production of soman-induced seizures initially in the piriform cortex and subsequently in other cortical and subcortical structures.  相似文献   

10.
Immunoreactivity for Fos protein following 30 min of sensory and behavioral experience with foster pups was measured in different brain areas of nulliparous female Balb/c mice who were intact, ovariectomized, or selectively depleted of olfactory bulb noradrenaline. Fos expression was also investigated in intact nulliparous female mice undergoing distal exposure to pup sensory cues. Behavioral interaction with pups increased Fos immunoreactivity in the olfactory areas (anterior olfactory nucleus, piriform cortex, corticomedial amygdala, and entorhinal cortex) as well as in the medial preoptic area, and this occurred regardless of whether females were intact or ovariectomized. Noradrenaline depletion of the olfactory bulb prevented Fos induction in primary olfactory areas, but not in the medial preoptic area, whereas distal exposure to pup cues enhanced Fos expression in the olfactory areas but not in the medial preoptic area. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
Localization of metabotropic glutamate receptor subtypes, mGluR1, mGluR1alpha, mGluR2/3, mGluR4a, mGluR5, mGluR7a, mGluR7b, and mGluR8, was examined in some of the target areas of projection fibers from the main and accessory olfactory bulbs (MOB and AOB) by using subtype-specific antibodies. The superficial layer of the olfactory tubercle and layer Ia of the piriform cortex, the target areas of MOB, showed marked mGluR1-, mGluR5-, mGluR7a-, and mGluR8-like immunoreactivities (-LI), and rather weak mGluR2/3-LI. The periamygdaloid cortical region including the target areas of both MOB and AOB showed intense mGluR2/3-LI as well as marked mGluR1-, mGluR5-, mGluR7a-, and mGluR8-LI. No significant mGluR1alpha-, mGluR4a-, or mGluR7b-LI was seen in these regions. After transection of the lateral olfactory tract, mGluR2/3-, mGluR7a-, and mGluR8-LI were reduced markedly in the target regions on the side ipsilateral to the transection; no significant changes were detected in mGluR1- or mGluR5-LI. Double labeling experiments indicated light and electron microscopically colocalization of mGluR7a- and mGluR8-LI in axon terminals on dendritic shafts of presumed interneurons in the superficial layer of the olfactory tubercle and layer Ia of the piriform cortex. Electron microscopically mGluR2/3-LI was seen in preterminal and terminal portions of axons, whereas mGluR7a- and mGluR8-LI were associated with presynaptic membrane specialization. Immunolabeled axon terminals were filled with round synaptic vesicles and constituted asymmetric synapses with dendritic profiles. The results suggest that glutamate release from axon terminals of projection fibers from MOB and AOB is regulated presynaptically and differentially through mGluR2/3, mGluR7a, and/or mGluR8.  相似文献   

12.
The distributions of two alternative splicing variants of metabotropic glutamate receptor mGluR7, mGluR7a and mGluR7b, were examined immunohistochemically in the rat and mouse by using variant-specific antibodies raised against C-terminal portions of rat mGluR7a and human mGluR7b. Many regions throughout the central nervous system (CNS) showed mGluR7-like immunoreactivities (LI). The distribution patterns of mGluR7-LI in the rat were substantially the same as those in the mouse, although some species differences were observed in a few regions. Intense mGluR7a-LI was seen in the main and accessory olfactory bulbs, anterior olfactory nucleus, islands of Calleja, superficial layers of the olfactory tubercle, piriform cortex and entorhinal cortex, periamygdaloid cortex, amygdalohippocampal area, hippocampus, layer I of the neocortical regions, globus pallidus, superficial layers of the superior colliculus, locus coeruleus, and superficial layers of the medullary and spinal dorsal horns. The distribution of mGluR7b was more restricted. It was intense in the islands of Calleja, substantia innominata, hippocampus, ventral pallidum, and globus pallidus. The medial habenular nucleus also showed intense mGluR7a-LI in the rat but not in the mouse. For both mGluR7a- and mGluR7b-LI, localization in the active zones of presynaptic axon terminals was confirmed electron microscopically at synapses of both the asymmetrical and symmetrical types. It is noteworthy that mGluR7a-LI is seen preferentially in relay nuclei of the sensory pathways and that both mGluR7a- and mGluR7b-LI are observed not only in presumed glutamatergic axon terminals, but also in non-glutamatergic axon terminals including presumed inhibitory ones. Thus, mGluR7 may play roles not only as an autoreceptor in glutamatergic axon terminals, but also as a presynaptic heteroreceptor in non-glutamatergic axon terminals in various CNS regions.  相似文献   

13.
Homozygous Purkinje Cell Degeneration (PCD) mice exhibit a selective loss of olfactory bulb mitral cells (MCs) after 4 months of age. This selective degeneration leaves a subpopulation of denervated granule cells which establish new reciprocal dendro-dendritic synapses with unaffected tufted cells (TCs) (14). This suggests a capacity for plasticity in TCs and raises the question of whether a comparable degree of reorganization occurs in their axonal terminals in piriform cortex (PC) following the loss of MCs. Homozygous (experimental) and heterozygous (control) PCD mice were routinely perfused and processed for electron microscopy. A quantitative electron microscopic analysis was performed on radially oriented micrograph montages spanning from the pia into layer II of PC. After MC loss in the experimental animals there was a decrease in density of larger myelinated axons in the lateral olfactory tract (LOT). Myelinated axons in the LOT had a mean cross-sectional diameter of 1.26 +/- 0.04, and 0.81 +/- 0.025 microm in the control and experimental mice, respectively. In superficial layer I of PC, control mice had presynaptic axonal terminals from mitral and tufted cells with characteristic electron lucent (light) profiles establishing asymmetric synapses with pyramidal cell dendrites. In contrast, the experimental mice showed a decrease in electron lucent terminals and a robust increase in electron dense (dark) presynaptic associational terminals. Although the overall synaptic density did not differ between the control and experimental mice (16.40 +/- 0.94 and 18.10 +/- 0.96 synapses/100 microm2, respectively), an overall decrease in the thickness of Layer 1 suggests that the total number of synapses decreases following MC loss. In addition to the apparent increase of associational terminals, the diameter of terminal enlargements increased as well as the number of multiple synaptic contact per terminals in the experimental animal, suggesting further compensatory mechanisms for the loss of MC presynaptic terminals.  相似文献   

14.
1. The effect of the intraperitoneal administration of cholecystokinin sulphated octapeptide (CCK-8S) (10 nmol/kg i.p.) on endogenous levels of several amino acids in five areas of the rat brain was analyzed. The olfactory bulb, hypothalamus, hippocampus, cerebral frontal cortex, and corpus striatum were evaluated. In addition, the effects of CCK-8S and PD 135,158 (1 mg/kg), a selective CCK(B) antagonist, on the performance of rats submitted to a dark/light transition test were also studied. 2. Upon administration of CCK-8S, the concentration of glutamate was reduced (27%) in the olfactory bulb. The same was observed when the levels of glycine (31%) or alanine (43%) were determined. No significant effects were produced by CCK-8S on cortical and hypothalamic levels. In the hippocampus, the concentration of both glutamate (27%) and taurine (29%) were reduced, whereas the levels of GABA in the striatum (29%) were increased. 3. After a single injection of CCK-8S, the time spent by the rats in the illuminated site of the dark/light transition test box, was not changed. On the contrary, the administration of PD 135,158 increased the time spent in the lighted compartment. 4. These results show that systemic administration of CCK-8S produced regional specific changes in brain amino acids, without producing any significant behavioral modification in the rat exposed to a dark/light box. In contrast, the selective CCKB receptor antagonist, PD 135,158, induces anxiolytic-like action in an animal model of anxiety.  相似文献   

15.
Cellular events associated with degeneration of the projection of the olfactory bulb to the molecular layer of the piriform cortex of the mouse have been studied with rapid-Golgi and Fink-Heimer impregnations and with the electron microscope. Four classes of axon terminals: s-1, s-d, f-1, and f-d, are differentiated on the basis of whether the synaptic vesicles are spherical or flattened and whether the axoplasm is lightly or darkly stained. The majority of s-1 terminals, the predominant class in sublamina Ia of the molecular layer, degenerate after bulb ablation. Degeneration of axon terminals is associated with dilation and, eventually, degeneration of segments of dendrites in Ia. Both s-1 and s-d terminals contribute to a partial reconstitution of the neuropil of Ia during the weeks after bulb ablation.  相似文献   

16.
There is increasing evidence that levels of glutamate are elevated in certain brain regions immediately prior to and during induction and propagation of seizures. Modulation of high-affinity glutamate uptake is a potential mechanism responsible for the elevated levels observed with Seizures. To date, three distinct Na(+)-dependent glutamate transporters have been cloned from rat and rabbit: GLT-1, GLAST, and EAAC-1. We performed a series of experiments to determine whether levels of these transporters are altered in amygdala-kindled rats. Levels of GLT-1, GLAST, and EAAC-1 were examined in three brain regions (hippocampus, piriform cortex/amygdala, and limbic forebrain) by quantitative immunoblotting using subtype-specific antibodies. GLAST protein was down-regulated in the piriform cortex/amygdala region of kindled rats as early as 24 h after one stage 3 seizure and persisting through multiple stage 5 seizures. In contrast, kindling induced an increase in EAAC-1 levels in piriform cortex/amygdala and hippocampus once the animals had reached the stage 5 level. NO changes in GLT-1 were observed in any region examined. Changes in transporter levels could contribute to the changes in glutamate levels seen with kindling.  相似文献   

17.
Serotonin 2A receptor (5-HT2A receptor) is widely distributed in the central nervous system, and has been suggested to be involved in a variety of behavioral conditions and neuropsychiatric disorders. Two polyclonal antibodies were raised against the N-terminus peptide of rat 5-HT2A receptor in chickens (5-HT2A-N) and a glutathione S-transferase fusion protein that contained the C-terminus of the mouse 5-HT2A receptor in rabbits (5-HT2A-C). Affinity-purified 5-HT2A-N and -C antibodies reacted strongly with a single band of 77-78 kDa in postsynaptic density proteins prepared from the rat cortex. The distribution pattern of immunoreactive structures in the rat brain was virtually the same for the two antibodies. The highest levels of immunoreactivity were observed in the olfactory bulb, neocortex, claustrum, piriform cortex, mamillary bodies, pontine nuclei, red nucleus and cranial motor nuclei. In the olfactory bulb, mitral cells were intensely labeled. In the neocortex, many immunoreactive neurons were found in layers II-VI. In layer IV of the neocortex, strong neuropil labeling was observed. In a double-labeling study using chicken 5-HT2A-N and rabbit anti-glial fibrillary acidic protein (GFAP) antibody, a considerable number of GFAP positive cells also showed 5-HT2A immunoreactivity. By using an immunoelectron microscopic technique, 5-HT2A receptor immunoreaction was shown to be localized just beneath the postsynaptic membrane thickening of asymmetric synapses.  相似文献   

18.
The projections of the olfactory bulb, the primordial dorsal, piriform and hippocampal pallia, and of the dorsal thalamus were studied in the lamprey Lampetra fluviatilis using horseradish peroxidase (HRP) and HRP coupled to the wheat germ agglutinin (WGA-HRP). There was obtained an experimental morphological evidence of the presence of the direct thalamo-telencephalic projections in this vertebrate species. The anterior and posterior parts of the dorsal thalamic nucleus, the nucleus of Bellonci, the primordial geniculate bodies, the rostral part of the midbrain were identified as the sources of the telencephalic afferents. These connections may serve as a morphological substrate for transmission of nonolfactory impulses to the telencephalon of the lamprey. The projections of the nucleus of Bellonci into the primordial hippocamp were compared to the limbic thalamo-hippocampal pathways of other vertebrates. We have established, that the fibers ascending from the dorsal thalamus were distributed in the same areas, as those descending from the olfactory bulb. These are: mainly the primordial hippocamp and only a few fibers reach the dorsal and piriform pallia, as well as an area free of olfactory projections--the dorsal part of the subhippocampal lobe. We have also demonstrated that, the secondary olfactory fibers mainly projected ipsilaterally to the primordial dorsal and piriform pallia. A lesser dense bulbar projection has been observed ipsilaterally in the primordial hippocamp and in the ventral part of the subhippocampal lobe. Only few olfactory projections were found in the pallial areas and in the subhippocampal lobe contralaterally. The olfactory fiber terminals were also observed ipsilaterally in the septum, striatum, preoptic area and in the contralateral olfactory bulb. Bilateral bulbofugal projections also occur in the diencephalon, namely in the ventral thalamus and in the hypothalamus. Caudally, the secondary olfactory fibers can be traced up to the area of the posterior tuberculum. Afferents to the olfactory bulb in the river lamprey originate in the subhippocampal lobe, in all three pallial formations and probably in the dorsal thalamus. These structures are at the same time the target zones for the olfactory bulb efferent projections, thus being connected reciprocally with the olfactory bulb.  相似文献   

19.
Sheep learn to recognize the odours of their lambs within two hours of giving birth, and this learning involves synaptic changes within the olfactory bulb. Specifically, mitral cells become increasingly responsive to the learned odour, which stimulates release of both glutamate and GABA (gamma-aminobutyric acid) neurotransmitters from the reciprocal synapses between the excitatory mitral cells and inhibitory granule cells. Nitric oxide (NO) has been implicated in synaptic plasticity in other regions of the brain as a result of its modulation of cyclic GMP levels. Here we investigate the possible role of NO in olfactory learning. We find that the neuronal enzyme nitric oxide synthase (nNOS) is expressed in both mitral and granule cells, whereas the guanylyl cyclase subunits that are required for NO stimulation of cGMP formation are expressed only in mitral cells. Immediately after birth, glutamate levels rise, inducing formation of NO and cGMP, which potentiate glutamate release at the mitral-to-granule cell synapses. Inhibition of nNOS or guanylyl cyclase activity prevents both the potentiation of glutamate release and formation of the olfactory memory. The effects of nNOS inhibition can be reversed by infusion of NO into the olfactory bulb. Once memory has formed, however, inhibition of nNOS or guanylyl cyclase activity cannot impair either its recall or the neurochemical release evoked by the learned lamb odour. Nitric oxide therefore seems to act as a retrograde and/or intracellular messenger, being released from both mitral and granule cells to potentiate glutamate release from mitral cells by modulating cGMP concentrations. We propose that the resulting changes in the functional circuitry of the olfactory bulb underlie the formation of olfactory memories.  相似文献   

20.
EAAC1 is a neuronal and epithelial high affinity glutamate transporter previously cloned from rabbit intestine. Here we report the isolation of EAAC 1 from rat brain* and its expression in the central nervous system based on in situ hybridization. Strong signals were detected in brain, spinal cord and retina. Expression of EAAC1 was particularly strong in pyramidal cells of the cerebral cortex, pyramidal cells of the hippocampus, mitral cells of the olfactory bulb, various thalamic nuclei and cells of certain retinal layers. EAAC1 was also expressed in non-glutamatergic neurons such as GABAergic cerebellar Purkinje cells and alpha-motor neurons of the spinal cord. We propose that EAAC1 is not only involved in the sequestration of glutamate at glutamatergic synapses and in protecting neurons from glutamate excitotoxicity, but also in the cellular metabolism involving glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号