共查询到20条相似文献,搜索用时 15 毫秒
1.
Simunovic V Zapp J Rachid S Krug D Meiser P Müller R 《Chembiochem : a European journal of chemical biology》2006,7(8):1206-1220
Myxococcus xanthus DK1622 is shown to be a producer of myxovirescin (antibiotic TA) antibiotics. The myxovirescin biosynthetic gene cluster spans at least 21 open reading frames (ORFs) and covers a chromosomal region of approximately 83 kb. In silico analysis of myxovirescin ORFs in conjunction with genetic studies suggests the involvement of four type I polyketide synthases (PKSs; TaI, TaL, TaO, and TaP), one major hybrid PKS/NRPS (Ta-1), and a number of monofunctional enzymes similar to the ones involved in type II fatty-acid biosynthesis (FAB). Whereas deletion of either taI or taL causes a dramatic drop in myxovirescin production, deletion of both genes (DeltataIL) leads to the complete loss of myxovirescin production. These results suggest that both TaI and TaL PKSs might act in conjunction with a methyltransferase, reductases, and a monooxygenase to produce the 2-hydroxyvaleryl-S-ACP starter that is proposed to act as the biosynthetic primer in the initial condensation reaction with glycine. Polymerization of the remaining 11 acetates required for lactone formation is directed by 12 modules of Ta-1, TaO, and TaP megasynthetases. All modules, except for the first module of TaL, lack cognate acyltransferase (AT) domains. Furthermore, deletion of a discrete tandem AT-encoded by taV-blocks myxovirescin production; this suggests an "in trans" mode of action. To embellish the macrocycle with methyl and ethyl moieties, assembly of the myxovirescin scaffold is proposed to switch twice from PKS to 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA)-like biochemistry during biosynthesis. Disruption of the S-adenosylmethionine (SAM)-dependent methyltransferase, TaQ, shifts production toward two novel myxovirescin analogues, designated myxovirescin Q(a) and myxovirescin Q(c). NMR analysis of purified myxovirescin Q(a) revealed the loss of the methoxy carbon atom. This novel analogue lacks bioactivity against E. coli. 相似文献
2.
3.
Felix Schalk Soohyun Um Huijuan Guo Nina B. Kreuzenbeck Dr. Helmar Görls Prof. Z. Wilhelm de Beer Dr. Christine Beemelmanns 《Chembiochem : a European journal of chemical biology》2020,21(20):2991-2996
Herein, we report the targeted isolation and characterization of four linear nonribosomally synthesized tetrapeptides (pseudoxylaramide A–D) and two cyclic nonribosomal peptide synthetase-polyketide synthase-derived natural products (xylacremolide A and B) from the termite-associated stowaway fungus Pseudoxylaria sp. X187. The fungal strain was prioritized for further metabolic analysis based on its taxonomical position and morphological and bioassay data. Metabolic data were dereplicated based on high-resolution tandem mass spectrometry data and global molecular networking analysis. The structure of all six new natural products was elucidated based on a combination of 1D and 2D NMR analysis, Marfey's analysis and X-ray crystallography. 相似文献
4.
Hayashi T Kitamura Y Funa N Ohnishi Y Horinouchi S 《Chembiochem : a European journal of chemical biology》2011,12(14):2166-2176
Fatty acyl-AMP ligases (FAALs) activate fatty acids as acyladenylates, and subsequently catalyze their transfer onto the acyl carrier proteins (ACPs) of polyketide synthases (PKSs) or nonribosomal peptide synthetases to produce lipidic metabolites. Myxococcus xanthus contains a polyketide biosynthesis gene cluster in which putative FAAL (FtpD) and ACP (FtpC) genes are located close to a type III PKS (FtpA) gene. Here we describe the characterization of these three proteins in vitro. FtpD adenylated stearic acid and produced stearoyl-FtpC. The stearoyl moiety was then transferred to FtpA. When extender substrates (malonyl-CoA and methylmalonyl-CoA) were added to the reaction, the alkylresorcinol 5-heptadecyl-4-methyl-benzene-1,3-diol was synthesized. Further in vitro analysis indicated that FtpA produces an alkylresorcylic acid as the direct product, and that this decarboxylates to alkylresorcinol nonenzymatically. This is the first report of a FAAL supplying a long-chain fatty acyl-ACP starter substrate to a type III PKS. 相似文献
5.
6.
In Vitro Investigation of Crosstalk between Fatty Acid and Polyketide Synthases in the Andrimid Biosynthetic Assembly Line 下载免费PDF全文
Dr. Fumihiro Ishikawa Hiroyasu Sugimoto Prof. Hideaki Kakeya 《Chembiochem : a European journal of chemical biology》2016,17(22):2137-2142
Andrimid (Adm) synthase, which belongs to the type II system of enzymes, produces Adm in Pantoea agglomerans. The adm biosynthetic gene cluster lacks canonical acyltransferases (ATs) to load the malonyl group to acyl carrier proteins (ACPs), thus suggesting that a malonyl‐CoA ACP transacylase (MCAT) from the fatty acid synthase (FAS) complex provides the essential AT activity in Adm biosynthesis. Here we report that an MCAT is essential for catalysis of the transacylation of malonate from malonyl‐CoA to AdmA polyketide synthase (PKS) ACP in vitro. Catalytic self‐malonylation of AdmA (PKS ACP) was not observed in reactions without MCAT, although many type II PKS ACPs are capable of catalyzing self‐acylation. This lack of self‐malonylation was explained by amino acid sequence analysis of the AdmA PKS ACP and the type II PKS ACPs. The results show that MCAT from the organism's FAS complex can provide the missing AT activity in trans, thus suggesting a protein–protein interaction between the fatty acid and polyketide synthases in the Adm assembly line. 相似文献
7.
Salinipyrone and Pacificanone Are Biosynthetic By‐products of the Rosamicin Polyketide Synthase 下载免费PDF全文
Dr. Takayoshi Awakawa Dr. Max Crüsemann Jason Munguia Dr. Nadine Ziemert Prof. Dr. Victor Nizet Prof. Dr. William Fenical Prof. Dr. Bradley S. Moore 《Chembiochem : a European journal of chemical biology》2015,16(10):1443-1447
Salinipyrones and pacificanones are structurally related polyketides from Salinispora pacifica CNS‐237 that are proposed to arise from the same modular polyketide synthase (PKS) assembly line. Genome sequencing revealed a large macrolide PKS gene cluster that codes for the biosynthesis of rosamicin A and a series of new macrolide antibiotics. Mutagenesis experiments unexpectedly correlated salinipyrone and pacificanone biosynthesis to the rosamicin octamodule Spr PKS. Remarkably, this bifurcated polyketide pathway illuminates a series of enzymatic domain‐ and module‐skipping reactions that give rise to natural polyketide product diversity. Our findings enlarge the growing knowledge of polyketide biochemistry and illuminate potential challenges in PKS bioengineering. 相似文献
8.
Dr. Takayoshi Awakawa Dr. Yoshinori Sugai Kanae Otsutomo Shukun Ren Dr. Shinji Masuda Dr. Yohei Katsuyama Prof. Dr. Yasuo Ohnishi 《Chembiochem : a European journal of chemical biology》2013,14(8):1006-1013
The purple photosynthetic bacterium Rhodospirillum centenum has a putative type III polyketide synthase gene (rpsA). Although rpsA was known to be transcribed during the formation of dormant cells, the reaction catalyzed by RpsA was unknown. Thus we examined the RpsA reaction in vitro, using various fatty acyl‐CoAs with even numbers of carbons as starter substrates. RpsA produced tetraketide pyranones as major compounds from one C10–14 fatty acyl‐CoA unit, one malonyl‐CoA unit and two methylmalonyl‐CoA units. We identified these products as 4‐hydroxy‐3‐methyl‐6‐(1‐methyl‐2‐oxoalkyl)pyran‐2‐ones by NMR analysis. RpsA is the first bacterial type III PKS that prefers to incorporate two molecules of methylmalonyl‐CoA as the extender substrate. In addition, in vitro reactions with 13C‐labeled malonyl‐CoA revealed that RpsA produced tetraketide 6‐alkyl‐4‐hydroxy‐1,5‐dimethyl‐2‐oxocyclohexa‐3,5‐diene‐1‐carboxylic acids from C14–20 fatty acyl‐CoAs. This class of compounds is likely synthesized through aldol condensation induced by methine proton abstraction. No type III polyketide synthase that catalyzes this reaction has been reported so far. These two unusual features of RpsA extend the catalytic functions of the type III polyketide synthase family. 相似文献
9.
Traitcheva N Jenke-Kodama H He J Dittmann E Hertweck C 《Chembiochem : a European journal of chemical biology》2007,8(15):1841-1849
Aureothin and neoaureothin (spectinabilin) represent rare nitroaryl-substituted polyketide metabolites from Streptomyces thioluteus and Streptomyces orinoci, respectively, which only differ in the lengths of the polyene backbones. Cloning and sequencing of the 39 kb neoaureothin (nor) biosynthesis gene cluster and its comparison with the aureothin (aur) pathway genes revealed that both polyketide synthase (PKS) assembly lines are remarkably similar. In both cases the module architecture breaks with the principle of colinearity, as individual PKS modules are used in an iterative fashion. Parsimony and neighbour-joining phylogenetic studies provided insights into the evolutionary process that led to the programming of these unusual type I PKS systems and to prediction of which modules act iteratively. The iterative function of the first module in the neoaureothin pathway, NorA, was confirmed by a successful cross-complementation. 相似文献
10.
Haagen Y Glück K Fay K Kammerer B Gust B Heide L 《Chembiochem : a European journal of chemical biology》2006,7(12):2016-2027
Streptomyces cinnamonensis DSM 1042 produces two classes of secondary metabolites of mixed isoprenoid/nonisoprenoid origin: the polyketide-isoprenoid compound furanonaphthoquinone I (FNQ I) and several prenylated phenazines, predominantly endophenazine A. We now report the cloning and sequence analysis of a 55 kb gene cluster required for the biosynthesis of these compounds. Several inactivation experiments confirmed the involvement of this gene cluster in the biosynthesis of FNQ I and endophenazine A. The six identified genes for endophenazine biosynthesis showed close similarity to phenazine biosynthetic genes from Pseudomonas. Of the 28 open reading frames identified in the adjacent FNQ I cluster, 13 showed close similarity to genes contained in the cluster for furaquinocin-a structurally similar metabolite from another Streptomyces strain. These genes included a type III polyketide synthase sequence, a momA-like monooxygenase gene, and two cloQ-like prenyltransferase genes designated fnq26 and fnq28. Inactivation experiments confirmed the involvement of fnq26 in FNQ I biosynthesis, whereas no change in secondary-metabolite formation was observed after fnq28 inactivation. The FNQ I cluster contains a contiguous group of five genes, which together encode all the enzymatic functions required for the recycling of S-adenosylhomocysteine (SAH) to S-adenosylmethionine (SAM). Two SAM-dependent methyltransferases are encoded within the cluster. Inactivation experiments showed that fnq9 is responsible for the 7-O-methylation and fnq27 for the 6-C-methylation reaction in FNQ I biosynthesis. 相似文献
11.
Dr. Zhongli Xu Martin Baunach Dr. Ling Ding Huiyun Peng Jakob Franke Prof. Dr. Christian Hertweck 《Chembiochem : a European journal of chemical biology》2014,15(9):1274-1279
Divergolides are structurally diverse ansamycins produced by a bacterial endophyte (Streptomyces sp.) of the mangrove tree Bruguiera gymnorrhiza. By genomic analyses a gene locus coding for the divergolide pathway was detected. The div gene cluster encodes genes for the biosynthesis of 3‐amino‐5‐hydroxybenzoate and the rare extender units ethylmalonyl‐CoA and isobutylmalonyl‐CoA, polyketide assembly by a modular type I polyketide synthase (PKS), and enzymes involved in tailoring reactions, such as a Baeyer–Villiger oxygenase. A detailed PKS domain analysis confirmed the stereochemical integrity of the divergolides and provided valuable new insights into the formation of the diverse aromatic chromophores. The bioinformatic analyses and the isolation and full structural elucidation of four new divergolide congeners led to a revised biosynthetic model that illustrates the formation of four different types of ansamycin chromophores from a single polyketide precursor. 相似文献
12.
Dr. Hannah K. D'Ambrosio Aaron M. Keeler Prof. Emily R. Derbyshire 《Chembiochem : a European journal of chemical biology》2023,24(17):e202300263
Natural product discovery has traditionally relied on the isolation of small molecules from producing species, but genome-sequencing technology and advances in molecular biology techniques have expanded efforts to a wider array of organisms. Protists represent an underexplored kingdom for specialized metabolite searches despite bioinformatic analysis that suggests they harbor distinct biologically active small molecules. Specifically, pathogenic apicomplexan parasites, responsible for billions of global infections, have been found to possess multiple biosynthetic gene clusters, which hints at their capacity to produce polyketide metabolites. Biochemical studies have revealed unique features of apicomplexan polyketide synthases, but to date, the identity and function of the polyketides synthesized by these megaenzymes remains unknown. Herein, we discuss the potential for specialized metabolite production in protists and the possible evolution of polyketide biosynthetic gene clusters in apicomplexan parasites. We then focus on a polyketide synthase from the apicomplexan Toxoplasma gondii to discuss the unique domain architecture and properties of these proteins when compared to previously characterized systems, and further speculate on the possible functions for polyketides in these pathogenic parasites. 相似文献
13.
Wang G Kharel MK Pahari P Rohr J 《Chembiochem : a European journal of chemical biology》2011,12(17):2568-2571
Mix'n'match: Enzymatic total synthesis of TDP-D-olivose was achieved, starting from TDP-4-keto-6-deoxy-D-glucose, by combining three pathway enzymes with one cofactor-regenerating enzyme. The results also revealed that MtmC is a bifunctional enzyme that can perform a 4-ketoreduction necessary for D-olivose biosynthesis besides the previously found C-methyltransfer for D-mycarose biosynthesis. 相似文献
14.
Polyketides of the pederin group are highly potent antitumor compounds found in terrestrial beetles and marine sponges. Pederin is used by beetles of the genera Paederus and Paederidus as a chemical defense. We have recently identified a group of putative pederin biosynthesis genes and localized them to the genome of an as yet unculturable Pseudomonas sp. symbiont, the likely true pederin producer. However, this polyketide synthase cluster lacks several genes expected for pederin production. Here we report an additional polyketide synthase encoded on a separate region of the symbiont genome. It contains at least three novel catalytic domains that are predicted to be involved in pederin chain initiation and the formation of an unusual exomethylene bond. The region is bordered by mobility pseudogenes; this suggests that gene transposition led to the disjointed cluster organization. With this work, all putative pederin genes have been identified. Their heterologous expression in a culturable bacterium will provide important insights into how sustainable sources of invertebrate-derived drug candidates can be created. 相似文献
15.
Investigation of a 6‐MSA Synthase Gene Cluster in Aspergillus aculeatus Reveals 6‐MSA‐derived Aculinic Acid,Aculins A–B and Epi‐Aculin A 下载免费PDF全文
Dr. Lene M. Petersen Dr. Dorte K. Holm Assoc. Prof. Charlotte H. Gotfredsen Prof. Uffe H. Mortensen Assoc. Prof. Thomas O. Larsen 《Chembiochem : a European journal of chemical biology》2015,16(15):2200-2204
Aspergillus aculeatus, a filamentous fungus belonging to the Aspergillus clade Nigri, is an industrial workhorse in enzyme production. Recently we reported a number of secondary metabolites from this fungus; however, its genetic potential for the production of secondary metabolites is vast. In this study we identified a 6‐methylsalicylic acid (6‐MSA) synthase from A. aculeatus, and verified its functionality by episomal expression in A. aculeatus and heterologous expression in A. nidulans. Feeding studies with fully 13C‐labeled 6‐MSA revealed that 6‐MSA is incorporated into aculinic acid, which further incorporates into three compounds that we name aculins A and B, and epi‐aculin A, described here for the first time. Based on NMR data and bioinformatic studies we propose the structures of the compounds as well as a biosynthetic pathway leading to formation of aculins from 6‐MSA. 相似文献
16.
Awakawa T Fujita N Hayakawa M Ohnishi Y Horinouchi S 《Chembiochem : a European journal of chemical biology》2011,12(3):439-448
A polyketide biosynthesis gene cluster (agq) was found on the genome of a rare actinomycete, Actinoplanes missouriensis. Streptomyces lividans expressing agqA encoding a type III polyketide synthase produced alkylresorcinols mainly from C(16-17) fatty acids. Heterologous expression of the agq genes in S. lividans indicated the function of cognate polyketide modification enzymes; a monooxygenase AgqB hydroxylates the alkylresorcinols to yield 6-alkyl-2-hydroxyhydroquinones, a methyltransferase AgqC catalyzes O-methylation of the alkyl-hydroxyhydroquinones to yield 6-alkyl-2-methoxyhydroquinones, and a UbiA-like prenyltransferase AgqD attaches a prenyl group to the C-4 hydroxy group of the alkyl-methoxyhydroquinones to yield 6-alkyl-4-O-geranyl-2-methoxyhydroquinones and 6-alkyl-4-O-dihydrofarnesyl-2-methoxyhydroquinones derived from C(16-17) fatty acids. In contrast, A. missouriensis was found to produce 6-alkyl-4-O-dihydrogeranyl-2-methoxyhydroquinones derived from C(16-18) fatty acids by the function of the agq gene cluster. All of these prenylated phenolic lipids were novel compounds. 相似文献
17.
Taichi Chisuga Dr. Akimasa Miyanaga Prof. Dr. Tadashi Eguchi 《Chembiochem : a European journal of chemical biology》2022,23(14):e202200200
The ketosynthase (KS) domain is a core domain found in modular polyketide synthases (PKSs). To maintain the polyketide biosynthetic fidelity, the KS domain must only accept an acyl group from the acyl carrier protein (ACP) domain of the immediate upstream module even when they are separated into different polypeptides. Although it was reported that both the docking domain-based interactions and KS-ACP compatibility are important for the interpolypeptide transacylation reaction in 6-deoxyerythronolide B synthase, it is not clear whether these findings are broadly applied to other modular PKSs. Herein, we describe the importance of protein-protein recognition in the intermodular transacylation between VinP1 module 3 and VinP2 module 4 in vicenistatin biosynthesis. We compared the transacylation activity and crosslinking efficiency of VinP2 KS4 against the cognate VinP1 ACP3 with the noncognate one. As a result, it appeared that VinP2 KS4 distinguishes the cognate ACP3 from other ACPs. 相似文献
18.
Bode HB Ring MW Schwär G Altmeyer MO Kegler C Jose IR Singer M Müller R 《Chembiochem : a European journal of chemical biology》2009,10(1):128-140
Isovaleryl-CoA (IV-CoA) is usually derived from the degradation of leucine by using the Bkd (branched-chain keto acid dehydrogenase) complex. We have previously identified an alternative pathway for IV-CoA formation in myxobacteria that branches from the well-known mevalonate-dependent isoprenoid biosynthesis pathway. We identified 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase (MvaS) to be involved in this pathway in Myxococcus xanthus, which is induced in mutants with impaired leucine degradation (e.g., bkd(-)) or during myxobacterial fruiting-body formation. Here, we show that the proteins required for leucine degradation are also involved in the alternative IV-CoA biosynthesis pathway through the efficient catalysis of the reverse reactions. Moreover, we conducted a global gene-expression experiment and compared vegetative wild-type cells with bkd mutants, and identified a five-gene operon that is highly up-regulated in bkd mutants and contains mvaS and other genes that are directly involved in the alternative pathway. Based on our experiments, we assigned roles to the genes required for the formation of IV-CoA from HMG-CoA. Additionally, several genes involved in outer-membrane biosynthesis and a plethora of genes encoding regulatory proteins were decreased in expression levels in the bkd(-) mutant; this explains the complex phenotype of bkd mutants including a lack of adhesion in developmental submerse culture. 相似文献
19.
Bo Cao Fen Yao Xiaoqing Zheng Dongbing Cui Yucheng Shao Changxiong Zhu Zixin Deng Delin You 《Chembiochem : a European journal of chemical biology》2012,13(15):2234-2242
A polyene macrolide antibiotic tetramycin biosynthetic gene cluster was identified by genome mining and isolated from Streptomyces hygrospinosus var. beijingensis. Genetic and in silico analyses gave insights into the mechanism of biosynthesis of tetramycin, and a model of the tetramycin biosynthetic pathway is proposed. Inactivation of a cytochrome P450 monooxygenase gene, tetrK, resulted in the production of a tetramycin B precursor: tetramycin A, which lacks a hydroxy group in its polyol region. TetrK was subsequently overexpressed heterologously in E. coli with a His6 tag, and purified TetrK efficiently hydroxylated tetramycin A to afford tetramycin B. Kinetic studies revealed no inhibition of TetrK by substrate or product. Surprisingly, sequence‐alignment analysis showed that TetrK, as a hydroxylase, has much higher homology with epoxidase PimD than with hydroxylases NysL and AmphL. The 3D structure of TetrK was then constructed by homology modeling with PimD as reference. Although TetrK and PimD catalyzed different chemical reactions, homology modeling indicated that they might share the same catalytic sites, despite also possessing some different sites correlated with substrate binding and substrate specificity. These findings offer good prospects for the production of improved antifungal polyene analogues. 相似文献