首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen doped titanium dioxide (N-TiO2) coatings were fabricated by oxidation of the TiNx coatings in air. TiNx coatings were prepared on stainless steel (SS) substrates by plasma surface alloying technique. The reference TiO2 sample was also deposited by oxidation of the Ti coatings in air. The as-prepared coatings were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and ultra violet-visible absorption spectroscopy (UV-Vis). The formation of anatase type TiO2 is confirmed by XRD. SEM measurement indicates a rough surface morphology with sharp, protruding modules after annealing treatment. The band gap of the N-doped sample is reduced from 3.25 eV to 3.08 eV compared with the undoped one. All the N-doped samples show red shift in photoresponse towards visible region and improved photocurrent density under visible irradiance is observed for the N-doped samples. The photocatalytic activity was evaluated via the photocatalytic oxidation of methylene blue (MB) in aqueous under visible light irradiation. The results reveal that the N-doped samples extend the light absorption spectrum toward the visible region. The degradation rate of N-TiO2 is 20% in visible irradiation for 150 min.  相似文献   

2.
In this work, TiO2 nanorods were prepared by a hydrothermal process and then Bi2MoO6 nanoparticles were deposited onto the TiO2 nanorods by a solvothermal process. The nanostructured Bi2MoO6/TiO2 composites were extensively characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the Bi2MoO6/TiO2 composites was evaluated by degradation of methylene blue. The Bi2MoO6/TiO2 composites exhibit higher catalytic activity than pure Bi2MoO6 and TiO2 for degradation of methylene blue under visible light irradiation (λ > 420 nm). Further investigation revealed that the ratio of Bi2MoO6 to TiO2 in the composites greatly influenced their photocatalytic activity. The experimental results indicated that the composite with Bi2MoO6:TiO2 = 1:3 exhibited the highest photocatalytic activity. The enhancement mechanism of the composite catalysts was also discussed.  相似文献   

3.
Nanocrystalline titanium dioxide films were formed on frosted and clear borosilicate glass with a large surface area (12 × 22 cm) using doctor blade and spray coating techniques. The films were subjected to a high temperature treatment at 550 °C. X-ray diffraction (XRD) analysis indicated that the TiO2 films contain only the anatase phase. Optical microscopy was used to determine the morphology changes after the deposition of each layer. Scanning electron microscopy (SEM) was used to study the films surface morphology. The large scale TiO2 films produced showed a high photocatalytic activity which was evaluated by the degradation of methyl orange (MO) in aqueous solution (10 mg L− 1) under illumination of a UV light source with an overall irradiance of 0.9 mW cm− 2. UV-visible spectrophotometry was used to monitor the degradation of MO through the decrease of the main absorbance peak at 464 nm. The results demonstrated that a complete decomposition of MO could be achieved after 2 h of UV irradiation.  相似文献   

4.
N-doped TiO2 nanotube arrays were prepared by electrochemical anode oxidation of Ti foil followed by treatment with N2-plasma and subsequent annealed under Ar atmosphere. The morphologies, composition and optical properties of N-doped TiO2 nanotube arrays were characterized using field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction spectrometer (XRD), Photoluminescence (PL) and UV-vis diffusion reflection spectroscopy (UV-vis DRS). Methylene blue (MB) solution was utilized as the degradation model to evaluate the photocatalytic activity of the samples under visible light irradiation. The results suggested N2-plasma treatment created doping of nitrogen onto the surface of photoelectrodes successfully and the N-doped TiO2 nanotube arrays display a significantly enhancement of the photocatalytic activity comparing with the pure TiO2 nanotube arrays under the visible light irradiation.  相似文献   

5.
To extend the application of N-TiO2 to substrates with low thermal resistance, N-TiO2 sol has been successfully synthesized at low temperature by reflux method and N-TiO2 coating on cotton fabrics has been successfully prepared in a dip-coating process. Several characterization tools, such as X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV–vis diffuse reflectance spectroscopy, were employed to study the phase structures, morphologies, the chemical states and optical properties of the samples. The photocatalytic properties of the prepared products were measured with the degradation of methyl orange at room temperature under visible light irradiation. In comparison with TiO2-cotton, the remarkable enhancement in the visible light photocatalytic performance of the N-TiO2-cotton could be attributed to the existence of N-TiO2 with narrow band gap. The photocatalytic performances of the N-TiO2-cotton were maintained for the cycling experiments, indicating that N-TiO2-cotton could be used as stable and efficient visible-light-induced self-cleaning materials.  相似文献   

6.
Sodium polyacrylate/TiO2 hybrid films that served as photoanodes for cathodic protection application were prepared by liquid phase deposition. Under white-light illumination, the open-circuit potential of the hybrid films coupled with SUS304 stainless steel could shift to a more negative value and offer an effective photogenerated cathodic protection for stainless steel. Moreover, the hybrid films also exhibited stronger photocurrents in both the ultraviolet-light and visible-light regions compared to that of control TiO2 films. In summary, the addition of sodium polyacrylate could greatly improve the photogenerated cathodic protection properties of the liquid-phase-deposited TiO2 films.  相似文献   

7.
In this study, N-doped ZnO thin films were fabricated by oxidation of ZnxNy films. The ZnxNy thin films were deposited on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) using metallic zinc wire (99.999%) as a cathode target in pure nitrogen plasma. The influence of oxidation temperature, on the electrical, structural and optical properties of N-doped ZnO films was investigated. P-type conduction was achieved for the N-doped ZnO obtained at 450 °C by oxidation of ZnxNy, with a resistivity of 16.1 Ω cm, hole concentration of 2.03 × 1016 cm−3 and Hall mobility of 19 cm2/V s. X-ray photoelectron spectroscopy (XPS) analysis confirmed the incorporation of N into the ZnO films. X-ray diffraction (XRD) pattern showed that the films as-deposited and oxidized at 350 °C were amorphous. However, the oxidized films in air atmosphere at 450-550 °C were polycrystalline without preferential orientation. In room temperature photoluminescence (PL) spectra, an ultraviolet (UV) peak was seen for all the samples. In addition, a broad deep level emission was observed.  相似文献   

8.
TiO2 thin films have been deposited at different Ar:O2 gas ratios (20:80,70:30,50:50,and 40:60 in sccm) by rf reactive magnetron sputtering at a constant power of 200 W. The formation of TiO2 was confirmed by X-ray photoelectron spectroscopy (XPS). The oxygen percentage in the films was found to increase with an increase in oxygen partial pressure during deposition. The oxygen content in the film was estimated from XPS measurement. Band gap of the films was calculated from the UV-Visible transmittance spectra. Increase in oxygen content in the films showed substantial increase in optical band gap from 2.8 eV to 3.78 eV. The Ar:O2 gas ratio was found to affect the particle size of the films determined by a transmission electron microscope (TEM). The particle size was found to be varying between 10 and 25 nm. The bactericidal efficiency of the deposited films was investigated using Escherichia coli (E. coli) cells under 1 h UV irradiation. The growth of E. coli cells was estimated through the Optical Density measurement by UV-Visible absorbance spectra. The qualitative analysis of the bactericidal efficiency of the deposited films after UV irradiation was observed through SEM. A correlation between the optical band gap, particle size and bactericidal efficiency of the TiO2 films at different argon:oxygen gas ratio has been studied.  相似文献   

9.
Nano-sized TiO2/WO3 bilayer coatings were prepared on type 304 stainless steel substrate by sol-gel method. The performance of photo-electrochemical and photogenerated cathode protection of the coating was investigated by the electrochemical method. The results show that the bilayer coating with four TiO2 layers and three WO3 layers exhibits the highest photo-electrochemical efficiency and the best corrosion resistance property. Type 304 stainless steel with the coating can maintain cathode protection for 6 h in the dark after irradiation by UV illumination for 1 h. In addition, the mechanism of the photogenerated cathode protection for the bilayer coating was also explored.  相似文献   

10.
In this paper, anodic TiO2 nanotubes are blended into the TiO2 mesoporous films based on P25 nanoparticles to assemble a list of dye-sensitized solar cells (DSSCs) with different nanotube concentrations. The electron properties of transport and recombination in the fabricated DSSCs are studied by using electrochemical impedance spectroscopy and the open-circuit voltage decay technique under AM 1.5 illumination. Results indicate that the electron lifetime increases with increasing the concentration of the anodic TiO2 nanotubes, the electron transport time at a blending level of 10 wt% TiO2 nanotubes is short as compared to that at 0 wt%, and above 10 wt%, the electron transport time has a trend of becoming large. Due to the combining effects of the electron transport and recombination, the electron collecting efficiency and the electron diffusion length obtain maxima at a blending level of 10 wt% nanotubes, which results in a highest short circuit current and a maximum energy conversion efficiency at this point in the DSSCs. This study gives a clear explanation for the performance enhancement of TiO2 particle-based DSSCs at a blending level of 10 wt% anodic TiO2 nanotubes and for the performance decrease at a blending level over 10 wt% anodic TiO2 nanotubes from the angle of the electron transport and recombination. This study also supplies a feasible and easy way to improve the performance of particle-based DSSCs by restraining electron recombination and accelerating electron transportation.  相似文献   

11.
In order to obtain the TiO2 films with high transmittance and superhydrophilicity without UV irradiation, porous TiO2/SiO2 bi-layer films were prepared by spin coated SiO2 sol and TiO2 sol including polyethylene glycol 2000 (PEG 2000) onto glass and subsequent calcination at 550 °C. Meanwhile, factors that affect the TiO2/SiO2 bi-layer films transmittance and superhydrophilicity were investigated in details by observing their surface morphologies and measuring their water contact angles (WCAs), spreading time and transmittances. The results indicated that the as-prepared TiO2/SiO2 bi-layer film showed superhydrophilicity without UV irradiation when 0.5 wt.% PEG 2000 was added in TiO2 sol. At the same time, its maximum transmittance was as high as 92.3%. The spreading time was only about 0.16 s. More importantly, the resultant film had an excellent stability of the superhydrophilic property.  相似文献   

12.
采用无模板剂的溶胶-水热法制备了具有可见光响应的N掺杂锐钛矿/金红石/板钛矿型TiO_2(N-TiO_2)纳米棒束,并利用X射线衍射(XRD)、透射电镜(TEM)、紫外-可见光漫反射光谱(UV-Vis DRS)、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)等手段对获得的样品进行了表征。以甲基橙为模型反应物,评价了N-TiO_2纳米棒束的光催化活性。表征结果结合光催化活性评价结果显示,与P25-TiO_2相比,N掺杂、混晶及纳米棒束之间的协同作用是所制备的混晶N-TiO_2纳米棒束具有良好光催化活性的主要原因,并对混晶N-TiO_2纳米棒束光催化降解甲基橙的机理进行了探讨。  相似文献   

13.
Thiourea modified nanocrystalline titanium dioxide (TiO2) thin films were prepared by sol-gel route and were thermally treated at five different temperatures (400, 500, 600, 800 and 1000 °C). The films were studied using GIXRD, PIGE and UV-vis spectroscopy. It was observed that the anatase to rutile phase transformation of TiO2 was inhibited by the thiourea modification. The transmittance of the modified films appeared reduced which was attributed both to the modification of TiO2 with thiourea and the light scattering in the films. The dark conductivity and the transient photoconductivity of the modified TiO2 sol-gel thin films were studied in vacuum and in air. The environment does not influence significantly the dark conductivity, because of the almost equivalent competition between oxygen and water adsorption. The photoconductivity reaches high values for all samples in both environments, with the sample treated at 500 °C to present the highest value. The larger values in vacuum can be attributed to the reduced amount of adsorbed oxygen at the surface, which acts as electron scavenger.  相似文献   

14.
The antibacterial properties of polymethyl methacrylate (PMMA) are enhanced by coating with TiO2 films. The transparent TiO2 films on plasma-treated PMMA are prepared by sol-gel dip coating. The modified surfaces are characterized by XRD, AFM, ATR-FTIR, SEM, UV-vis spectroscopy, and contact angle measurements. Finally, the antibacterial properties are evaluated using the method of plate-counting of Staphylococcus aureus (gram positive) and Escherichia coli (gram negative). It is found that the anatase-TiO2 film is well-conglutinated on PMMA surface with an average crystallite size of ca. 4 nm. The as-prepared TiO2/PMMA exhibits excellent photoinduced antibacterial effect for the sterilization of bacteria under indoor natural light, and about 100% of both bacteria are inactivated within 2 h illumation. Compared to PMMA without any treatment, the superior anti-adhesion capability of the TiO2/PMMA surface is also demonstrated.  相似文献   

15.
The in situ oxidative template polymerization of aniline was performed successfully on the surface of negatively charged titania (TiO2) nanoparticles with a mean diameter of 40 nm using ammonium persulfate and a Chem-Solv solution at pH 1 and 25 °C. SEM showed that the resulting polyaniline (PANI)/TiO2 composites were well dispersed in solution due to the electrostatic repulsion force. Ultraviolet/visible spectroscopy, thermogravimetric analysis, Fourier-transform infrared spectroscopy, and cyclic voltammetry showed that the optical, thermal, and electrical properties of PANI/TiO2 composites were quite different from those of pure PANI or TiO2, which was attributed to the strong interaction between the two components. The conductivity of the PANI/TiO2 composite was estimated to be 0.91 × 10−1 S/cm at 25 °C in the range of semiconductor.  相似文献   

16.
This study investigates using an inorganic photosensitive CuInS2 (CIS) coating instead of an organic dye on TiO2 nanotube arrays (TNAs). The stoichiometric characteristics by use of various deposition parameters such as precursor concentrations (0.1 M, 0.05 M, and 0.01 M) and deposition cycles (1-60 cycles) are then analyzed in relation to the crystallinity and photosensitivity. TNAs are synthesized by anodic oxidation of Ti metal, modified by the TiO2 film, and are subsequently annealed at 450 °C for 30 min, producing what are named T-TNAs. They show high photocatalytic efficiency and photosensitivity under UV-illumination. The photosensitive CIS coatings on the T-TNAs are processed by an ionic compounds lamination reaction (ICLR) method. The more immersion cycles and the higher the precursor concentration of copper sulfide, the more CIS peeled off as precipitates formed, which result in less indium sulfide deposition being required for reacting with the copper sulfide to reach stoichiometry. Near stoichiometric CIS can be obtained by controlling the precursor concentration and deposition cycles of the ICLR process. Good crystallinity and n-type characteristics are achieved by controlling the precursor concentrations and deposition cycles suitably to obtain a high current density. When the Cu/In ratio is adjusted for n-type characteristics, the current density reaches at least 300 μA/cm2 under visible light illumination intensity of 100 mW/cm2.  相似文献   

17.
CdBiO2Cl with layered structure as a novel efficient photocatalyst was synthesized by a solid state reaction method. The optical band gap of CdBiO2Cl is determined to be 3.08 eV by UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of CdBiO2Cl for degrading methyl orange (MO) is much higher than that of commercially obtained anatase TiO2 under UV light illumination. The Ag-loading over CdBiO2Cl leads to an obvious increase in the photocatalytic performance. The photocatalytic activity is discussed in close connection with the crystal structure and the electronic structure.  相似文献   

18.
Fe-doped BiVO4 with hierarchical flower-like structure was prepared via a hydrothermal method using sodium dodecyl benzene sulfonate (SDBS) as structure directing agent. X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), high resolution transmission electron microscope (HRTEM), X-ray photoelectron spectroscopy (XPS) and UV-Vis were applied for characterization of the as-prepared samples. The formation mechanism of flower-like structure was proposed based on the evolution of morphology as a function of hydrothermal time. Fe-doped into substitutional sites of BiVO4 effectively improved the migration and separation of photogenerated carrier and enhanced the utilization of visible light. Flower-like Fe-doped BiVO4 showed much higher visible-light-driven photocatalytic efficiency for degradation of methyl blue compared with the pristine BiVO4. And the sample with a Fe/Bi mole ratio of 2.5% showed the highest photocatalytic efficiency.  相似文献   

19.
TiO2 thin films were deposited on silicon wafer substrates by low-field (1 < B < 5 mT) helicon plasma assisted reactive sputtering in a mixture of pure argon and oxygen. The influence of the positive ion density on the substrate and the post-annealing treatment on the films density, refractive index, chemical composition and crystalline structure was analysed by reflectometry, Rutherford backscattering spectroscopy (RBS) and X-ray diffraction (XRD). Amorphous TiO2 was obtained for ion density on the substrate below 7 × 1016 m− 3. Increasing the ion density over 7 × 1016 m− 3 led to the formation of nanocrystalline (~ 15 nm) rutile phase TiO2. The post-annealing treatment of the films in air at 300 °C induced the complete crystallisation of the amorphous films to nanocrystals of anatase (~ 40 nm) while the rutile films shows no significant change meaning that they were already fully crystallised by the plasma process. All these results show an efficient process by low-field helicon plasma sputtering process to fabricate stoichiometric TiO2 thin films with amorphous or nanocrystalline rutile structure directly from low temperature plasma processing conditions and nanocrystalline anatase structure with a moderate annealing treatment.  相似文献   

20.
Thin TiO2 films on quartz substrates were prepared by spin coating of undoped and metal-ion-doped Sol-Gel precursors. These films were characterised by Scanning Electron Microscopy, Laser Raman Microspectroscopy, X-ray Diffraction and UV-Vis Transmission. The photocatalytic performances of the films were assessed by the photo-degradation of methylene-blue in aqueous solution under UV irradiation. Films exhibited a high degree of orientation and a thermal stabilization of the anatase phase as a result of substrate effects. In the absence of dopants, the rutile phase formed as parallel bands in the anatase which broadened as the transformation progressed. TiO2 films doped or co-doped with transition metals exhibited the formation of rutile in segregated clusters at temperatures under ~ 800 °C as a result of increased levels of oxygen vacancies. Photocatalytic activity of the films synthesised in this work was low as likely a result of poor TiO2 surface contact with dye molecules in the solution. The presence of transition metal dopants appears detrimental to photocatalytic activity while the performance of mixed phase films was not observed to differ significantly from single phase material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号