首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present investigation electroless Ni-P coatings were prepared. Structural characterizations indicated that the as-deposited coating had an amorphous structure with a P content of 23 at.%. The deformation behavior of an electrolessly amorphous Ni-P coating was investigated by using the Vickers indentation and the Tribo-indenter instrumented nano-indentation technique. The hardness of the Ni-P coating is remarkably improved after proper heat-treatment and the hardness is as high as 12.7 GPa for the coating annealed at 400 °C for 1 h. However, the cracks were observed during the indentation of the Ni-P coatings annealed at 400 °C and 500 °C for 1 h. The corresponding fracture toughness was evaluated as 2.58 MPa m0.5 and 1.33 MPa m0.5, respectively. Nanoscratching tests indicated that the wear resistance of the Ni-P coatings was improved significantly with an increasing ratio of hardness (H) to elastic modulus (E). It was observed that the friction coefficient increased from 0.083 ± 0.006 for the Ni-P coating annealed at 300 °C up to 1.337 ± 0.009 for the IF steel substrate, while the H/E simultaneously decreased from 0.084 (10.7/128) to 0.009 (1.85/200). The study revealed that the electrolessly amorphous Ni-P coating had offered better corrosion resistance than the Ni-P coatings after heat-treatment. An annealing temperature of 300 °C is preferentially suggested for the trade-off between the wear resistance property and anti-corrosion property of the Ni-P coating.  相似文献   

2.
Superhard nanostructured coatings, prepared by plasma-assisted chemical vapour deposition (PACVD) and physical vapour deposition (PAPVD) techniques, such as vacuum arc evaporation and magnetron sputtering, are receiving increasing attention due to their potential applications for wear protection. In this study nanocomposite (TiAl)BxNy (0.09 ≤ x ≤ 1.35; 1.07 ≤ y ≤ 2.30) coatings, consisting of nanocrystalline (Ti,Al)N and amorphous BN, were deposited onto Si (100), AISI 316 stainless steel and AISI M2 tool steel substrates by co-evaporation of Ti and hot isostatically pressed (HIPped) Ti-Al-B-N material from a thermionically enhanced twin crucible electron-beam (EB) evaporation source in an Ar plasma at 450 °C. The coating stoichiometry, relative phase composition, nanostructure and mechanical properties were determined using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), in combination with nanoindentation measurements. Aluminium (∼ 10 at.% in coatings) was found to substitute for titanium in the cubic TiN based structure. (Ti,Al)B0.14N1.12 and (Ti,Al)B0.45N1.37 coatings with average (Ti,Al)N grain sizes of 5-6 nm and either ∼ 70, or ∼ 90, mol% (Ti,Al)N showed hardness and elastic modulus values of ∼ 40 and ∼ 340 GPa, respectively. (Ti,Al)B0.14N1.12 coatings retained their ‘as-deposited’ mechanical properties for more than 90 months at room temperature in air, comparing results gathered from eight different nanoindentation systems. During vacuum annealing, all coatings examined exhibited structural stability to temperatures in excess of 900 °C, and revealed a moderate, but significant, increase in hardness. For (Ti,Al)B0.14N1.12 coatings the hardness increased from ∼ 40 to ∼ 45 GPa.  相似文献   

3.
In the present investigation electroless ternary NiWP-Al2O3 composite coatings were prepared using an electroless nickel bath. Second phase alumina particles (1 µm) were used to codeposit in the NiWP matrix. Nanocrystalline ternary NiWP alloys and composite coatings were obtained using an alkaline citrate based bath which was operated at pH 9 and temperature at 88 ± 2 °C. Mild steel was used as a substrate material and deposition was carried out for about 4 h to get a coating thickness of 25 ± 3 µm. Metallographic cross-sections were prepared to find out the coating thickness and also the uniform distribution of the aluminum oxide particles in NiWP matrix. Surface analysis carried out on both the coatings using scanning electron microscope (SEM) showed that particle incorporation in ternary NiWP matrix has increased the nodularity of composite coatings compared to fine nodular NiWP deposits. Elemental analysis of energy dispersive X-ray (EDX) results showed that codeposited P and W elements in plain NiWP deposit were 13 and 1.2 wt.%, respectively. There was a decrease in P content from 13 to 10 wt.% with a marginal variation in the incorporated W (1.01 wt.%) due to the codeposition of aluminum oxide particles in NiWP matrix. X-ray diffraction (XRD) studies carried out on as-plated deposits showed that both the deposits are X-ray amorphous with a grain size of around 3 nm. Phase transformation studies carried out on both the coatings showed that composite coatings exhibited better thermal stability compared to plain NiWP deposits. From the XRD studies it was found that metastable phases such as NiP and Ni5P2 present in the composite coatings heat treated at major exothermic peak temperature. Annealed composite coatings at various temperatures revealed higher microhardness values compared to plain NiWP deposits.  相似文献   

4.
New experimental results are presented on the structure and the elemental and phase composition of hybrid coatings, which were deposited on a substrate of AISI 321 stainless steel using a combination of plasma-detonation, vacuum-arc and subsequent High-Current Electron Beam (HCEB) treatment. We found that an increase in energy density intensified mass transfer processes and resulted in changes in aluminum oxide phase composition (γ → α and β → α). Also we observed the formation of a nanocrystalline structure in Al2O3 coatings. Electron beam treatment of a hybrid coating surface induced higher adhesion, decreased the intensity of surface wear and increased corrosion resistance in a sulphuric acid solution. The corrosion resistance of the coatings was studied in several electrolytic solutions (0.5 M H2SO4, 1 M HCl, 0.75 M NaCl) using electrochemical techniques. In most cases the corrosion resistance was improved, except those in NaCl solutions. The nano-hardness of the protecting coating was 13 GPa before electron beam melting and 9 GPa after it (as a result of TiN and Al2O3 sub-layers mixing).  相似文献   

5.
Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800 °C and 120 min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that grown CNTs covering the surface of stainless steel particles were multi-walled type with an average diameter of about 44 nm. Microstructures of pure stainless steel and SS/CNT composite coatings similarly showed splat characteristic and lamellar structure. Incorporation of CNTs was clearly observed in the composite coating. Hardness of SS/CNT composite coating (480 ± 36 HV0.3) was higher than that of pure stainless steel coating (303 ± 33 HV0.3). Coefficient of friction of the SS/CNT coating was almost 3 times lower than that of stainless steel coating which resulted in reduction of sliding wear rate of nearly 2 times. This research thus demonstrated a new composite coating with better wear resistive performance compared to a coating deposited by commercially available stainless steel powder.  相似文献   

6.
Zirconium nitride was deposited by reactive unbalanced magnetron sputtering at different N2 partial pressures, on an AISI 316L stainless steel substrate. The mechanical properties of the coatings were evaluated by means of nanoindentation tests employing a Berkovich indenter and loads which varied between 120-9000 µN. The sliding wear behavior of the substrate-coating systems was studied under a normal load of 2 N using a ball-on-disc tribometer, with an AISI 52100 ball (6 mm diameter) as counterpart. It has been found that N2 partial pressure has a significant effect both on the hardness and corresponding Young's modulus of the coatings. As the N2 partial pressure increases from 1 × 10− 4 Torr to 10 × 10− 4 Torr, the hardness and Young's modulus of the coatings decrease from 26 to 20 GPa and 360 to 280 GPa, respectively. The nanoindentation tests revealed the presence of a third oxide layer (10 nm thick, approximately) on the surface of the coating. Scanning electron microscopy (SEM) analysis performed on the worn triboelements indicated that both abrasive and adhesive wear mechanisms could take place in addition to the substrate plastic deformation. The deposition conditions and coating mechanical integrity determine the predominant wear mechanism.  相似文献   

7.
The aim of this work was a comparative investigation of the structure and properties of Al- and Cr-doped TiSiCN coatings deposited by magnetron sputtering of composite TiAlSiCN and TiCrSiCN targets produced by self-propagating high-temperature synthesis method. Based on X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy data, the Al- and Cr-doped TiSiCN coatings possessed nanocomposite structures (Ti,Al)(C,N)/a-(Si,C) and (Ti,Cr)(C,N)/a-SiCxNy/a-C with cubic crystallites embedded in an amorphous matrix. To evaluate the thermal stability and oxidation resistance, the coatings were annealed either in vacuum at 1000, 1100, 1200, and 1300 °C or in air at 1000 °C for 1 h. The results obtained show that the hardness of the Al-doped TiSiCN coatings increased from 41 to 46 GPa, reaching maximum at 1000 °C, and then slightly decreased to 38 GPa at 1300 °C. The Cr-doped TiSiCN coatings demonstrated high thermal stability up to 1100 °C with hardness above 34 GPa. Although both Al- and Cr-doped TiSiCN coatings possessed improved oxidation resistance up to 1000 °C, the TiAlSiCN coatings were more oxidation resistant than their TiCrSiCN counterparts. The TiCrSiCN coatings showed better tribological characteristics both at 25 and 700 °C and superior cutting performance compared with the TiAlSiCN coatings.  相似文献   

8.
Hard nano-structured metal matrix composite (MMC) boride coatings have been synthesized by laser melting of pre-placed powder mixture paste of B4C + sol-gel derived nano-particulate TiO2 on AISI 1050 (EN43) medium carbon steel and AISI 316L stainless steel substrates. Different coating/processing gas conditions were employed to understand the influence of graphite and nitrogen gas interactions with the coating material at high temperatures. Laser synthesized coatings were characterized by SEM, EDX, FEGSEM, XRD and HRTEM. Results show that it is possible to synthesize nano-structured MMC coatings (with TiB2 and TiB particulates in the ranges of 5-10 nm, 20 nm and 200-500 nm) by employing the combined laser and sol-gel route. Nano-particulate and sub-micron level TiB and TiB2 are found dispersed throughout the metal matrix. Other borides and carbides are present in micro-level patches dispersed in a eutectic matrix. Hardness of the composite coatings is in the range 800-2000 HV0.1. The minimum coefficient of sliding friction obtained in a pin-on-disc set-up was 0.35 (against cemented tungsten carbide) while wear rates (against diamond) were substantially improved (up to 5 fold reduction) over that of the substrates.  相似文献   

9.
AISI H13 die steel substrates were low pressure gas nitrided to different thicknesses and hardness values. Nitrided and non nitrided samples were subsequently coated with bi-layer TiAlN/TiN to two different thicknesses. The hardness was measured across the coating thickness and observed to be higher when a thinner coating was deposited over nitrided substrates. The hardness behavior across relatively thin (3 μm) coatings was not affected by the nitrided surface hardness or thickness of the nitride layer in the range of values examined here (80-150 μm). On the other hand, the hardness behavior of thicker coatings (8um) was affected by the nitrided layer, as the thicker coatings were soft due to their columnar structure. The specific wear rate of the duplex coatings was affected by the coating thickness and hardness distribution across the coating system.  相似文献   

10.
Among the number of attractive properties that transition-metal diborides (TiB2, CrB2, etc.) possess, high resistance to wear and chemical inertness are the most important when considering diboride coatings for dry machining of nonferrous materials, such as aluminium and its alloys. Due mostly to the problematic deposition of chromium diboride (preparation of targets, target cracking during the deposition process, control of stoichiometry etc.), these coatings remain comparatively less studied than, for example, titanium diborides, regarding their tribological performance.In this paper we report on the tribological behaviour of pulsed magnetron sputtered (PMS), smooth and fully dense, crystalline, 21-38 GPa hard CrB2 coatings examined by reciprocating sliding wear testing in ambient air (20 ± 2 °C, 20-30% humidity) against EN AW-2017A aluminium alloy and AISI 52100 chrome steel. The results are compared to those of pulsed magnetron sputter deposited TiN and CrN coatings. It is demonstrated that pulsed magnetron sputtered chromium diboride coatings exhibit the best tribological performance, in terms of amount of aluminium adhered on the surface of the wear track, during testing against aluminium alloy. When slid against AISI 52100 steel PMS CrB2, CrN and TiN coatings exhibited coefficients of friction of 0.6, 0.6-0.7 and 0.43-0.45 respectively. The tribological behaviour of coatings was found to be dependent on the transfer film formation and its properties. Wear rates were up to ten times lower for pulsed magnetron sputtered CrB2 coatings, compared to DC sputtered Cr-B films.  相似文献   

11.
Ti-Al-N coatings are well known for their excellent properties and age-hardening abilities. Here we show that the life-time of coated inserts during turning of stainless steel can be increased to 200% by post-deposition vacuum annealing at 900 °C combined with a ~ 1 K/min vacuum furnace cooling. During milling of 42CrMo steel an increase in tool life-time to 140% is only obtained if the cooling condition after annealing at 900 °C contains a fast segment with 50 K/min from 800 to 700 °C. Thereby, the Co-binder in cemented carbide exhibits a retarded phase transformation from cubic to hexagonal. Consequently, the fracture toughness of the cemented carbide is reduced only from ~ 10.8 to 10.4 MPa√m while the coating still has an adhesive strength of ~ 65 N.Our results indicate that best machining performances of coated inserts are obtained after annealing at 900 °C where the supersaturated Ti0.34Al0.66N coating undergoes spinodal decomposition to form nm-sized cubic TiN and AlN domains resulting in a hardness increase from 34.5 to 38.7 GPa. Additionally, we demonstrate that careful attention needs to be paid on the influence of annealing conditions on adhesive strength and fracture toughness of coated inserts.  相似文献   

12.
Vanadium carbide coatings were formed on AISI 52100 steel specimens by thermoreactive diffusion and characterized using nanoindentation, x-ray diffraction, and chemical analysis. The deposition process formed a 4-µm coating of vanadium carbide (V4C3) with an average grain size of 33 nm and a [200] crystallographic texture. The hardness and elastic modulus of the coatings were determined to be 35 ± 7.5 GPa and 334 ± 67 GPa, respectively. Friction and wear of the coatings were examined in reciprocating sliding contact against tungsten carbide (WC) balls in dry and in an abrasive environment. It was determined that in the abrasive environment, the V4C3 coating provided wear protection comparable to WC.  相似文献   

13.
Tungsten-zirconium carbide composites were fabricated at different temperatures by the displacive compensation of porosity (DCP) method, the microstructure, mechanical properties, and ablation resistance were investigated. It was found that no WC phase was left in the composites prepared at 1400 °C, and a few residual W2C particles were surrounded in W product. Microstructure analyses revealed that zirconium atoms diffused into tungsten carbide to form ZrC and W2Zr besides carbon diffused into the Zr2Cu melt. Composites fabricated at 1400 °C had a flexural strength of 356.7 ± 15.2 MPa, an elastic modulus of 193.7 ± 9.8 GPa, a fracture toughness of 7.0 ± 0.7 MPa m1/2, and a hardness of 13.6 ± 0.7 GPa. After ablated by an oxyacetylene flame for 30 s, the higher temperature prepared composites had a better ablation resistance, the linear ablation rate was 0.0033 ± 0.0004 mm/s, and the mass ablation rate was 0.0012 ± 0.0001 g/s.  相似文献   

14.
Reported are results of microstructure, mechanical and tribological properties studies for thin, amorphous hydrogenated carbon based coatings with tungsten content from 4.7 at.% up to 10.3 at.%. Studied coatings have been deposited by pulsed, reactive magnetron sputtering on substrates under planetary rotation. Resulting coatings, characterized by transmission electron microscopy (TEM) also at high resolution (HREM), show multilayer structure consisting of sub-layers of W-C:H type, with alternately high and low tungsten concentration. Thickness and number of sub-layers depend on rotation speed of planetary substrate holder. An average tungsten concentration decreases with increasing partial pressure of reactive gas (C2H2) during deposition. More insight into the microstructure of coatings provided HREM analysis showing crystalline precipitations of about 1-2 nm in size as well as tungsten-rich and tungsten-poor W-C:H sub-layers. Raman spectra confirm presence of amorphous, hydrogenated carbon (a-C:H) phase in the coatings. Microhardness of studied coatings depends on tungsten content and increases from 10.7 GPa to 13.7 GPa, for 5.1 at.% and 10.3 at.% of tungsten content, respectively. The highest cracking resistance and best adhesion (Lc2 = 78 N and HF1) has been achieved for coatings containing 4.9 at.% of tungsten and a sub-layer thickness of 5 nm. Tribological processes occurring in the coating-coating contact zone are dominated by graphitization and oxidation of W-C:H coating. Very low friction coefficient (0.04) and low wear rate seems to be an effect gaseous micro-bearing by tribo-generated carbon oxides and methane as well as hydrogen released from the coating. In the W-C:H-steel contact zone a tribo-layer composed of iron and tungsten oxides mixed with graphite-like products is growing at the surface of steel counterpart. This tribo-layer becomes a barrier restricting direct contact of steel with the coating and thus preventing it from further intense wear.  相似文献   

15.
The effect of pulsed plasma nitriding temperature and time on the pitting corrosion behaviour of AISI H13 tool steel in 0.9% NaCl solutions was investigated by cyclic polarization. The pitting potential (Epit) was found to be dependent on the composition, microstructure and morphology of the surface layers, whose properties were determined by X-ray diffraction and scanning electron microscopy techniques. The best corrosion protection was observed for samples nitrided at 480 °C and 520 °C. Under such experimental conditions the Epit-values shifted up to 1.25 V in the positive direction.  相似文献   

16.
In this study, cemented carbide ball nose end mills with nano-crystalline Al0.67Ti0.33N hard PVD coatings deposited by cathodic arc evaporation were annealed at 700 °C during 2 h in a controlled atmosphere environment (argon + oxygen mixture) and in vacuum. The changes of structure and properties of the treated coating surfaces have been analyzed using both cross-sectional scanning electron microscopy (SEM) and x-ray absorption spectroscopy (XAS) of the N-K and O-K edges. Cutting tools have been run through ball nose end milling of hardened H13 steel (HRC 50) where temperature or stress dominating phenomena control tool life. The data obtained indicate that an AlTiN coated cutting tool can be modified upon annealing at low temperature conditions and should be considered as a composite surface engineered material. It is shown that increased tool life could be achieved if annealing of AlTiN is performed in an oxygen-containing atmosphere. A variety of different characteristics should be optimized to achieve better wear resistance of the cutting tools with annealed Al0.67Ti0.33N coating under high temperature and stress cutting conditions.  相似文献   

17.
Cr-Al-Si-N coatings with high and low Cr/Al ratios (CrAlSiN and AlCrSiN, respectively) were deposited on WC substrates by cathodic arc and compared with a reference Cr-Al-N coating. The silicon content was close to 3 at.%. X-ray diffraction analysis showed that CrAlN and CrAlSiN coatings exhibited the cubic Cr(Al)N structure, whereas in AlCrSiN a mixture of cubic Cr(Al)N and wurtzite-type AlN was identified. All three coatings showed excellent thermal stability and oxidation resistance up to 800 °C. The tribological properties were evaluated by ball-on-disk tribometer in the temperature range 25-600 °C. Two materials were used as counterparts: alumina and 440C steel. Sliding against 440C steel balls led to the extensive wear of the balls and transfer of the ball material to the surface of the coatings. The coatings were not damaged. When sliding against alumina balls, the coating wear was low up to testing temperature 300 °C. At 400 °C, CrAlSiN coating was partially worn through. CrAlN and AlCrSiN coatings were almost immediately worn out at 600 °C. The analysis of the wear debris identified high-temperature adhesive failure of the coatings.  相似文献   

18.
Because of the high residual compressive stress normally accompanying the growth of diamond-like carbon (DLC) coatings and the large mismatch in the thermal expansion coefficient between DLC and steel, it is difficult to grow DLC coatings much thicker than 0.25 μm on steels. This paper describes our attempt to overcome this thickness limitation by a sequence of carbonitriding, carburizing and equilibration pre-treatments of the steel surface, followed by DLC coating deposition, all conducted within the same deposition system without breaking vacuum. These pre-treatments resulted in a surface with a graded composition and hardness profile. Such a graded interface is expected to reduce the interfacial energy, decrease thermal mismatch between the coating and the substrate, and thus improve coating adhesion. X-ray diffraction revealed the formation of various hard carbide and nitride phases. Raman spectroscopy showed that the modified steel surface just before DLC deposition exhibits local carbon bonding characteristics similar to DLC. Pulsed dc plasma-enhanced chemical vapor deposition was used to deposit one-micron thick DLC on these steel surfaces. The coating hardness was ~ 18-19 GPa. Its adhesion on the steel substrate was measured by scratch testing and was found to be comparable to thick, adherent DLC coatings deposited by other methods.  相似文献   

19.
The ability to quantify surface mechanical properties is valuable for assessing the quality of thermal spray coatings. This is especially important for prostheses where loading is placed directly on the surface. Hydroxyapatite was classified to small (20-40 μm), medium (40-60 μm) and large (60-80 μm) particle sizes and thermal sprayed to produce a coating from spread solidified hydroxyapatite droplets. It was revealed for the first time, that nanoindentation can be successfully used to determine the hardness and elastic modulus on the surface of well spread solidified droplets at the hydroxyapatite coating surface. Comparison with indentation results from polished cross-section exhibited comparable values and statistical variations. The hardness was 5.8 ± 0.6, 5.4 ± 0.5 and 5.0 ± 0.6 GPa on coatings produced from small, medium and large sized powder. Similarly, the elastic modulus decreased from 121 ± 7, 118 ± 7 to 114 ± 7 GPa, respectively. Use of several indentation loads gave comparable results with sintered hydroxyapatite suggesting good inter-splat bonding within the coating. MicroRaman spectroscopy and X-ray diffraction confirmed a larger degree of dehydroxylation for the smaller particles also revealing a lower elastic modulus. This shows the influence of particle size and possibly dehydroxylation of hydroxyapatite on the mechanical properties of the coating surface.  相似文献   

20.
A new method was investigated to obtain composite coatings on the AZ91D magnesium alloy by electrodeposition and low temperature thermal treatment. Zinc and tin were introduced to AZ91D Mg alloy surface by electroplating firstly. And a succedent thermal treatment was carried out at 190 ± 10 °C for 12 h. The surface and cross-section morphologies of the plated coatings with and without thermal treatment were studied by scanning electron microscopy (SEM). And the microstructure was determined by X-ray diffraction (XRD). The results reveal that it was difficult to obtain good adhesion plated Sn coating but easy to get well-adherent plated Zn coating. And the thermal treatment promoted the formation of Mg2Sn in the plated Sn coating and the recrystallization in the plated Zn coating. The plated double Zn-Sn coating owned good adhesion and uniform surface. Furthermore, when the plated double Zn-Sn coating was treated at 190 ± 10 °C for 12 h, a three-layer structure coating was formed due to the diffusion of tin. The results of the anodic polarization behaviors in 5 wt.% NaCl solution show that the three-layer structure coating could provide better protection for AZ91D substrate than the plated Zn-Sn coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号