首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni-P and Ni-P-Al2O3 amorphous alloy coatings with 9.3 and 8.3 wt.% P respectively were obtained by autocatalytic deposition at 90 °C on carbon steel substrates. The effect of annealing temperature (100, 200, 300, 400 and 500 °C) upon the corrosion parameters of the coatings in artificial seawater with pH 5.0 and 8.1 at room temperature was evaluated by potentiodynamic polarisation and electrochemical impedance spectroscopy. It was found that deposits annealed at 400 and 500 °C presented an increase of the charge transfer resistance and negligible changes on samples annealed at lower temperature. Polarisation tests showed a charge transfer controlled anodic kinetics on both Ni-P and Ni-P-Al2O3 deposits and diffusion controlled cathodic reaction in artificial seawater at pH 5.0 and 8.1. The coatings did not present passive behaviour in the electrolytes and impedance measurements showed a single time constant for all cases with the lowest double layer capacitance (Cdl) for samples annealed at 400 and 500 °C. The best corrosion parameters were observed on Ni-P and Ni-P-Al2O3 coatings annealed at temperatures higher than 400 °C, which is the temperature where crystallisation of this kind of coatings takes place.  相似文献   

2.
The coating Cr3C2 with 50 wt.% Ni20Cr deposited by high velocity oxy-fuel (HVOF) spray process was characterized in detail to investigate the effect of annealing on the solid particle erosion behaviour and understand the influence of the binder properties. Systematic characterization of the coating was carried out using electron microscopy (scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA)), X-ray diffraction (XRD), microindentation and nanoindentation techniques. The solid particle erosion tests were done on the as-sprayed coating and coatings annealed at 400 °C, 600 °C and 800 °C using silica erodent particles. The coefficient of restitution of the coated samples was also measured by WC ball impact tests to simulate dynamic impacts. The as-sprayed coating consisted of primary carbides and binder that was a mixture of amorphous and nanocrystalline phases. Annealing leads to recrystallisation of binder phase and precipitation of secondary carbides. The coating hardness and binder ductility change with annealing temperature. The erosion resistance improves with annealing up to 600 °C. In the as-sprayed coating, the amorphous phase, inter-splat boundaries and the elastic rebound characteristics affect the erosion response. While in the case of the coating annealed at 600 °C, the presence of ductile crystalline binder, fine carbide precipitates and embedment of erodent particles together improve solid particle erosion resistance.  相似文献   

3.
In the present investigation electroless Ni-P coatings were prepared. Structural characterizations indicated that the as-deposited coating had an amorphous structure with a P content of 23 at.%. The deformation behavior of an electrolessly amorphous Ni-P coating was investigated by using the Vickers indentation and the Tribo-indenter instrumented nano-indentation technique. The hardness of the Ni-P coating is remarkably improved after proper heat-treatment and the hardness is as high as 12.7 GPa for the coating annealed at 400 °C for 1 h. However, the cracks were observed during the indentation of the Ni-P coatings annealed at 400 °C and 500 °C for 1 h. The corresponding fracture toughness was evaluated as 2.58 MPa m0.5 and 1.33 MPa m0.5, respectively. Nanoscratching tests indicated that the wear resistance of the Ni-P coatings was improved significantly with an increasing ratio of hardness (H) to elastic modulus (E). It was observed that the friction coefficient increased from 0.083 ± 0.006 for the Ni-P coating annealed at 300 °C up to 1.337 ± 0.009 for the IF steel substrate, while the H/E simultaneously decreased from 0.084 (10.7/128) to 0.009 (1.85/200). The study revealed that the electrolessly amorphous Ni-P coating had offered better corrosion resistance than the Ni-P coatings after heat-treatment. An annealing temperature of 300 °C is preferentially suggested for the trade-off between the wear resistance property and anti-corrosion property of the Ni-P coating.  相似文献   

4.
Silica coatings have been applied on the surface of ZE41 magnesium alloy following the organic sol-gel route and the dip-coating technique. Three different concentrations of sol solution and two densification temperatures of the coating (400 °C and 500 °C) were used to optimize the compaction of the coatings and as a result reach the corrosion protection of the metallic substrate tests in 3.5 wt.% NaCl aqueous solution. Crack-free coatings with thickness in the 2-3 μm were obtained on the ZE41 magnesium alloy. The combination of high alkoxide concentration in the sol-gel formulation, and the high sintering temperature (500 °C) leads to coating (D500) with the optimal physical barrier against the corrosion process. This coating was capable of resisting more than 7 days in contact with the aggressive electrolyte suffering minor corrosion degradation. A corrosion mechanism for each of the tested specimens has been proposed.  相似文献   

5.
MgO coating is formed on magnesium alloy by anodic electrodeposition in 6 M KOH solution, whereas Mg(OH)2 coating is produced by anodization in 10 M KOH solution, which could be successively converted to MgO by calcination in air at 450 °C. The evolution of morphology, structure and composition of anodic film obtained on Mg alloy is investigated using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD). Potentiodynamic polarization measurements show that the as-grown MgO protective coatings are very effective in improving the corrosion resistance of magnesium alloy compared to bare metallic magnesium.  相似文献   

6.
The variation of microstructure and corrosion characteristics with the applied annealing conditions of a HANA-4 (Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr) alloy were studied by utilizing transmission electron microscopy and a corrosion test at 360 °C in a water environment. The samples were annealed at temperature ranges from 540 to 660 °C up to 16 h after β quenching at 1050 °C. The corrosion behaviour with the annealing conditions was divided into two groups following the second phase characteristics. The suitable annealing temperature to obtain good corrosion resistance in the HANA-4 alloy ranged from 570 to 600 °C.  相似文献   

7.
A series of ceramic coatings have been prepared on P91 substrates by spray pyrolysis processes and on Zr-2.5Nb substrates by a plasma electrolytic oxidation process. Preliminary results show that coatings obtained with different solution compositions and procedures can reduce the oxidation weight gain of P91 samples by factors of 2-10 for exposure times up to 500 h in deaerated supercritical water at 500 °C and 25 MPa. Results also show that the weight gain of a P91 sample with an alumina (Al2O3) coating is about nine times less than that of uncoated P91 after exposures for 400 h in deaerated supercritical water at 650 °C and 25 MPa. These results indicate that the Al2O3 coating shows promising results for preventing oxidation of P91 under supercritical water conditions. The samples with ceramic coatings on Zr-2.5Nb substrates show marginally improved corrosion resistance compared to the bare substrates.  相似文献   

8.
NiCoCrAlYSiB coatings were deposited by arc ion plating (AIP) and annealed/pre-oxidised under various conditions. The corrosion behaviour of as-deposited and annealed/pre-oxidised coatings was studied by salt spray testing in a neutral mist of 5 wt% NaCl at 35 °C for 200 h. The results showed that the as-deposited NiCoCrAlYSiB coating behaved poorly while the annealed and pre-oxidised ones performed much better in salt spray tests. The dense microstructure in annealed coatings and formation of α-Al2O3 scales on the surface during pre-oxidation improved the corrosion resistance in salt spray test. The corrosion process was investigated from the aspects of corrosion products, and its electrochemical mechanism was proposed as well.  相似文献   

9.
TiVCrAlSi high entropy alloy coatings were deposited on Ti-6Al-4V alloy by laser cladding. SEM, XRD and EDS analyses show that, the as-clad coating is composed of (Ti,V)5Si3 and a BCC solid solution. After annealing at 800 °C for 24 h under vacuum, the coating is composed of (Ti,V)5Si3, Al8(V,Cr)5, and a BCC solid solution. The temperature-dependent phase equilibrium for the coating material calculated by using the CALPHAD method, indicates that above 880 °C the stable phases existing in the coating material are a BCC solid-solution and (Ti,V)5Si3. When the temperature is below 880 °C, the stable phases are (Ti,V)5Si3, Al8(V,Cr)5, and a BCC solid solution. In order to validate the calculation results, they were compared with TiVCrAlSi alloy samples prepared by arc melting, encapsulated in quartz tubes under vacuum, annealed at 400-1100 °C for 3 days and water-quenched. XRD analysis shows that the experimental phase composition agrees with the thermodynamic calculations. After vacuum annealing, there is a small increase of hardness for the laser clad TiVCrAlSi coating, which is due to the formation of Al8(V,Cr)5. The oxidation tests show that the TiVCrAlSi coating effectively improves the oxidation resistance of Ti-6Al-4V at 800 °C in air. The formation of a dense and adherent scale consisting of SiO2, Cr2O3, TiO2, Al2O3 and a small amount of V2O5 is supposed to be responsible for the observed improvement of the oxidation resistance.  相似文献   

10.
An ∼ 5 µm Cr2AlC coating was synthesized on near-α titanium alloy Ti6242 using an industrially sized magnetron sputtering coater. Isothermal oxidation at 700 °C and 800 °C, and cyclic oxidation at 700 °C of the bare alloys and coated specimens were investigated in air. The results indicated that the Ti6242 alloy faced serious oxidation problems at 700 °C and 800 °C. Repeated formation and spallation of the multilayered oxide scale on the Ti6242 alloy occurred during oxidation testing. The coated specimens exhibited much better oxidation behaviour as compared to the bare alloy. A continuous Al-rich oxide scale formed on the coating surface during the initial oxidation stages. The oxide scale and coating itself acted as diffusion barriers blocking the further ingress of oxygen and protected the substrate alloy from oxidation. The oxidation mechanisms of the bare alloy and the coated specimens were investigated based on the experimental results.  相似文献   

11.
A new type of Pt + Hf-modified γ′-Ni3Al + γ-Ni-based coating has been developed in which deposition involves Pt electroplating followed by combined aluminizing and hafnizing using a pack cementation process. Cyclic oxidation testing of both Pt + Hf-modified γ′ + γ and Pt-modified β-NiAl coatings at 1150 °C (2102 °F), in air, resulted in the formation of a continuous and adherent α-Al2O3 scale; however, the latter developed unwanted surface undulations after thermal cycling. Type I (i.e. 900 °C/1652 °F) and Type II (i.e. 705 °C/1300 °F) hot corrosion behavior of the Pt + Hf-modified γ′ + γ coating were studied and compared to Pt-modified β and γ + β-CoCrAlY coatings. Both types of hot corrosion conditions were simulated by depositing Na2SO4 salt on the coated samples and then exposing the samples to a laboratory-based furnace rig. It was found that the Pt + Hf-modified γ′ + γ and Pt-modified β coatings exhibited superior Type II hot corrosion resistance compared to the γ + β-CoCrAlY coating; while the Pt + Hf-modified γ′ + γ and γ + β-CoCrAlY coatings showed improved Type I hot corrosion performance than the Pt-modified β.  相似文献   

12.
TiO2 thin films were deposited by DC reactive magnetron sputtering. Some TiO2 thin films samples were annealed for 5 min at different temperatures from 300 to 900 °C. The structure and optical properties of the films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and ultraviolet-visible (UV-vis) spectrophotometry, respectively. The influence of the annealing temperature on the structure and optical properties of the films was investigated. The results show that the as-deposited TiO2 thin films are mixtures of anatase and rutile phases, and possess the column-like crystallite texture. With the annealing temperature increasing, the refractive index and extinction coefficient increase. When the annealing temperature is lower than 900 °C, the anatase phase is the dominant crystalline phase; the weight fraction of the rutile phase does not increase significantly during annealing process. As the annealing temperature rises to 900 °C, the rutile phase with the large extinction coefficient becomes the dominant crystalline phase, and the columnar structure disappears. The films annealed at 300 °C have the best optical properties for the antireflection coatings, whose refractive index and extinction coefficient are 2.42 and 8 × 10−4 (at 550 nm), respectively.  相似文献   

13.
Aluminizing is an effective method to protect alloys from oxidation and corrosion. In this article, the microstructure, morphology, phase composition of the aluminized layers and the oxide films were investigated by SEM, EDS and X-ray diffraction. The high temperature oxidation resistance and electrochemical behavior of hot dip aluminizing coatings on commercial-purity titanium had been studied by cyclic oxidation test and potentiodynamic polarization technique. The results show that the reaction between the titanium and the molten aluminum leads to form an aluminum coating which almost has the composition of the aluminum bath. After diffusion annealing at 950 °C for 6 h, the aluminum coating transformed into a composite layer, which was composed of an inner layer and an outer layer. The inner layer was identified as Ti3Al or Ti2Al phase, and the outer layer was TiAl3 and Al2O3 phase. The cyclic oxidation treatment at 1000 °C for 51 h shows that the oxidation resistance of the diffused titanium is 13 times more than the bare titanium. And the formation of TiAl3, θ-Al2O3 and compact α-Al2O3 at the outer layer was thought to account for the improvement of the oxidation resistance at high temperature. However, the corrosion resistance of the aluminized titanium and the diffused titanium were reduced in 3.5 wt.% NaCl solution. The corrosion resistance of the aluminized titanium was only one third of bare titanium. Moreover, the corrosion resistance of the diffused titanium was far less than bare titanium.  相似文献   

14.
Sol-gel alumina coatings were developed on the surface pre-treated (zinc-phosphated) mild steel substrate and subsequently sintered at 300 °C, 400 °C and 500 °C. The alumina sol was synthesised using aluminium iso-propoxide as a precursor material. FTIR of the boehmite (AlOOH) gel sintered at above-mentioned temperatures was employed to identify the presence of various functional groups. The microstructural features and the phase analysis of the sol-gel coated specimens were carried out using SEM and XRD respectively. The corrosion resistance of the sol-gel alumina coatings was evaluated by electrochemical measurement in 3.5% NaCl solution at room temperature. The abrasive wear behaviour of the sol-gel coated specimens was measured in two body (high stress) conditions. The experimental results revealed that the sol-gel coated specimen sintered at 400 °C has superior wear and corrosion resistance properties as compared to the sol-gel coated specimen sintered at 300 °C. However, the sol-gel coated specimen sintered at 500 °C has exhibited a very poor corrosion and wear resistance properties. Poor performance of the sol-gel coatings sintered at 500 °C could be explained to be due to (i) the presence of numerous cracks (ii) absence of organic groups in the coating.  相似文献   

15.
TA15 titanium alloy was successfully processed for the first time by equal channel angular pressing (ECAP) in the temperature range of 900-1000 °C and annealed in a wide temperature interval from 650 to 800 °C. The investigation was achieved by light microscope (LM), scanning electron microscope (SEM) and transmission electron microscope (TEM) on the microstructure evolution of TA15 alloy subjected to ECAP and subsequent annealing after ECAP. In the present work, equal channel angular pressing (ECAP) was taken as the effective method to acquire severe plastic deformation (SPD). The studies we have performed show that grains have been obviously refined and well globularized after ECAP. When TA15 alloy was pressed at the temperatures of α + β phase region equiaxed microstructure was created. There was an increase in the equilibrium grain size with increasing pressing temperature, while a decrease in the volume fraction of equiaxed α phase. TEM microstructural images illustrate that an amount of deformation twins emerged while pressing TA15 below α-β transformation temperature (Tβ), which led to the continued plastic deformation through the restarting of many slip bands. Severe coarsening took place in β grains during ECAP at the temperature above Tβ. A larger number of well globularized and more homogeneous equiaxed α phase of TA15 alloy annealed after ECAP has been attained. Furthermore, with annealing at the optimum temperature, grains have not grown significantly.  相似文献   

16.
化学沉积 Ni-Mo-P 和 Ni-P 镀层退火晶化组织及耐蚀性   总被引:1,自引:1,他引:0  
目的研究化学沉积Ni-4.11%Mo-6.50%P和Ni-9.19%P合金镀层退火晶化转变特征,通过定量表征镀层的晶化程度、晶粒尺寸及结晶相的质量分数,建立显微组织与耐蚀性的关联。方法采用XRD衍射技术和Jade软件分析,定量表征镀层的晶化组织特征,由SEM/EDS测试确定镀层的成分及表面形貌,通过浸泡腐蚀实验及金相显微观察,对比两种镀层的耐蚀性。结果 Ni-Mo-P镀层在低于400℃退火时,只有Ni相结晶;在≥400℃退火时,发生Ni3P晶化反应,同时伴有Ni-Mo固溶体的形成,600℃时的晶化程度为88.13%。相比之下,Ni-P镀层中Ni3P相开始析出的温度降至300℃,600℃时的晶化程度达到91%。在相同温度进行热处理时,Ni-Mo-P镀层晶粒尺寸小于Ni-P镀层。在发生Ni3P晶化反应的温度下,两种镀层中Ni3P的晶粒尺寸总是大于Ni相。在0.5 mol/L的H2SO4中,对于Ni-Mo-P镀层,除300℃外,其他温度下的热处理均能显著改善其耐蚀性;而对于Ni-P镀层,镀态下具有最好的耐蚀性能。在10%的HCl溶液中,退火温度为600℃时,Ni-Mo-P镀层的耐点蚀性能更好;而Ni-P合金则相反,镀态及低温200℃退火后的耐点蚀性能最好。结论 Mo的共沉积提高了Ni-Mo-P镀层Ni3P的析出温度,降低了镀层的晶化程度及晶粒尺寸;与Ni-P镀层相比,高温退火的Ni-Mo-P镀层表现出了优异的耐点蚀性能,但耐硫酸均匀腐蚀的性能较差。  相似文献   

17.
In the present paper, the corrosion behavior of Ti60 alloys with an aluminide, TiAlCr, and enamel coatings in moist air containing NaCl vapor at 700-800 °C were studied. The results showed that the TiAlCr and aluminide coatings failed to protect the substrate from corrosion due to the cyclic formation of volatile products during corrosion at 800 °C. However, an uneven continuous protective Al2O3 scale could form on the aluminide coating during corrosion at 700 °C. And the enamel coating could protect Ti60 from corrosion due to its high thermochemical stability and matched thermal expansion coefficient with substrates of Ti-base alloys during corrosion.  相似文献   

18.
A figure of merit (FOM) has been developed to define the quality of ceramic (e.g., ZrO2) coatings on metal and alloy [Type 304SS and Alloy 600] surfaces. Zirconia (ZrO2) coatings were developed as a means of protecting the metal/alloy surfaces from stress corrosion cracking (SCC) in boiling water reactor (BWR) primary heat transport circuits, by inhibiting the cathodic reaction (reduction of oxygen and hydrogen peroxide) on the surface external to the crack. The distribution of pores in the coating plays an important role in corrosion prevention, such that the lower the porosity of the coating, the better the protection afforded to the system against SCC. Since the reactors operate at high temperature (e.g., at 288 °C under full power conditions), the temperature dependence of the FOM was investigated. The figure of merit (FOM) was developed by measuring impedance data over a wide range of frequency (10 mHz-5 kHz) at temperatures of 25, 100, 200, and 288 °C in hydrogenated, buffered solutions, with the hydrogen electrode reaction (HER) being used as a “fast” redox couple. An “equivalent circuit” analog was first developed from the bare surface impedance data and this analog was then employed in a second step to model the pore bottom in defining the pore distribution on the coated surface. A lognormal distribution (LND) of the pores was assumed and the parameters of the LND were determined using a constrained optimization technique to fit the model to the experimental data for the coated surface at different temperatures. The results suggest that, as temperature increases, the coating becomes more porous, making the substrate more susceptible to corrosion cracking. At 288 °C, 87% of the SS and 85% of the Ni-alloy surfaces become porous with the pore radius varying from 0.0001 cm to 0.01 cm.  相似文献   

19.
High-energy synchrotron in situ X-ray powder diffraction has been used to elucidate the mechanism of the hydriding phase transformation in a LaNi5 model hydrogen storage intermetallic in real time. The transformation proceeds at 10 °C via the transient growth of an interfacial phase, the γ phase, with lattice parameters intermediate between those of the α (dilute solid solution) and β (concentrated hydride) phases. The γ phase forms to partially accommodate the 24% change in unit cell volume between the α and β phases during hydriding and dehydriding. The α, γ and β phases coexist at the nanoscopic level.  相似文献   

20.
Plasma electrolytic oxidation (PEO) is a unique surface treatment technology which is based on anodic oxidation forming ceramic oxide coatings on the surface of light alloys such as Mg, Al and Ti. In the present study, PEO coatings prepared on AZ91D, AZ31B, AM60B and AM50B Mg alloys have been investigated. Surface morphology and elemental composition of coatings were determined using scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS). SEM results showed that the coating exhibited a porous top surface layer and a subsequent dense layer with micro-pores and shrinkage cracks. Phase analysis of coatings was carried out by X-ray diffraction (XRD). XRD analyses indicated that PEO coatings on AZ alloys had higher amount of Periclase (MgO) followed by the presence of Spinel (MgAl2O4) e.g. on the AZ91D alloy compared to that on AM series alloys. In order to examine the effect of substrate composition on adhesion strength of PEO coating scratch tests were carried out. Electrochemical corrosion tests were undertaken by means of potentiodynamic polarization technique in 3.5% NaCl solution at room temperature (20 ± 2 °C). Corrosion test results indicated that the corrosion rates of coated Mg alloys decreased by nearly two orders of magnitude as compared to bare Mg alloys. PEO coatings on AZ series alloys showed better corrosion resistance and higher adhesion properties than AM series alloys. In addition to the PEO processing parameters, such are mainly attributes of the compositional variations of the substrate alloys which are responsible for the formation, phase contents and structural properties of the PEO coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号