首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical properties and wear rates of Al2O3-13 wt.% TiO2 (AT-13) and Al2O3-43 wt.% TiO2 (AT-43) coatings obtained by flame and atmospheric plasma spraying were studied. The feed stock was either ceramic cords or powders. Results show that the wear resistance of AT-13 coatings is higher than that of AT-43 and it seems that the effect of hardness on wear resistance is more important than that of toughness. Additionally, it was established that, according to conditions used to elaborate coatings and the sliding tribological test chosen, spray processes do not seem to have an important effect on the wear resistance of these coatings.  相似文献   

2.
NiAl-TiB2 composite coatings with 0, 10 and 20 wt.% TiB2 were synthesized on the Ni-based superalloy substrate using electro-thermal explosion ultrahigh speed spraying technology. The microstructure analysis shows that the coatings consist of submicron grains. The bond between coatings and substrate is metallic cohesion. TiB2 as a powerful reinforcement is doped in NiAl for increasing its hardness. The isothermal oxidation test is carried out for the composite coatings at 1100 °C in air. The result shows that the oxidation resistance of NiAl coating is higher than that of NiAl-10TiB2 and NiAl-20TiB2 coatings. The phases of oxides on the coatings during the process at high temperature have been analyzed by X-ray diffraction. The results show that Al2O3 and Cr2O3 coexistence on surface of NiAl coating, while Al2O3, Cr2O3, TiO2 and a small amount of NiO form on surface of NiAl-10TiB2 and NiAl-20TiB2 coatings after oxidation for 4 h.  相似文献   

3.
以大气等离子喷涂工艺制备的Al_2O_3陶瓷涂层为模板,利用陶瓷涂层中存在的孔隙和微裂纹,采用水热反应在其内部原位合成具有润滑特性的MoS_2,制备出Al_2O_3/MoS_2的复合涂层。结果表明,通过水热反应在陶瓷涂层原有的微观缺陷中成功合成了MoS_2,合成的MoS_2固体粉末呈类球形状,并且这球状的粉末是由纳米片层状的MoS_2搭建组成的。摩擦试验结果表明,与纯Al_2O_3涂层相比,复合涂层中由于MoS_2润滑膜的形成,其摩擦因数和磨损率都显著降低,且载荷越大,复合涂层的摩擦性能越好。  相似文献   

4.
Aluminum/alumina composites are used in automotive and aerospace industries due to their low density and good mechanical strength. In this study, compocasting was used to fabricate aluminum-matrix composite reinforced with micro and nano-alumina particles. Different weight fractions of micro (3, 5 and 7.5 wt.%) and nano (1, 2, 3 and 4 wt.%) alumina particles were injected by argon gas into the semi-solid state A356 aluminum alloy and stirred by a mechanical stirrer with different speeds of 200, 300 and 450 rpm. The microstructure of the composite samples was investigated by Optical and Scanning Electron Microscopy. Also, density and hardness variation of micro and nano composites were measured. The microstructure study results revealed that application of compocasting process led to a transformation of a dendritic to a nondendritic structure of the matrix alloy. The SEM micrographs revealed that Al2O3 nano particles were surrounded by silicon eutectic and inclined to move toward inter-dendritic regions. They were dispersed uniformly in the matrix when 1, 2 and 3 wt.% nano Al2O3 or 3 and 5 wt.% micro Al2O3 was added, while, further increase in Al2O3 (4 wt.% nano Al2O3 and 7.5 wt.% micro Al2O3) led to agglomeration. The density measurements showed that the amount of porosity in the composites increased with increasing weight fraction and speed of stirring and decreasing particle size. The hardness results indicated that the hardness of the composites increased with decreasing size and increasing weight fraction of particles.  相似文献   

5.
Ni/Al2O3 composite coatings were prepared by a novel method from a modified Watt's type electrolyte containing nano-Al2O3 particles, where a high magnetic field was imposed in the direction parallel to an electrolytic current instead of mechanical agitation. Effects of magnetic field on the content of particles, surface morphology, microhardness and wear resistance of plating layer were investigated. It was found that the high magnetic field played an important role in the formation of composite coatings. The amounts of nano-Al2O3 particles in the composite coating increased with increasing of magnetic flux density and reached a maximum value at 8 T, then reduced slightly. The microhardness and wear resistance of the nanocomposite coatings also enhanced with increasing of magnetic flux density as compared to that of pure Ni coating fabricated in the absence of magnetic field. That was because the co-deposited nano-Al2O3 particles were uniformly distributed in the Ni matrix and contributed to greatly increase the microhardness and wear resistance of the composite coatings. Moreover, the mechanism of action of high magnetic field was discussed preliminarily.  相似文献   

6.
In the present investigation electroless ternary NiWP-Al2O3 composite coatings were prepared using an electroless nickel bath. Second phase alumina particles (1 µm) were used to codeposit in the NiWP matrix. Nanocrystalline ternary NiWP alloys and composite coatings were obtained using an alkaline citrate based bath which was operated at pH 9 and temperature at 88 ± 2 °C. Mild steel was used as a substrate material and deposition was carried out for about 4 h to get a coating thickness of 25 ± 3 µm. Metallographic cross-sections were prepared to find out the coating thickness and also the uniform distribution of the aluminum oxide particles in NiWP matrix. Surface analysis carried out on both the coatings using scanning electron microscope (SEM) showed that particle incorporation in ternary NiWP matrix has increased the nodularity of composite coatings compared to fine nodular NiWP deposits. Elemental analysis of energy dispersive X-ray (EDX) results showed that codeposited P and W elements in plain NiWP deposit were 13 and 1.2 wt.%, respectively. There was a decrease in P content from 13 to 10 wt.% with a marginal variation in the incorporated W (1.01 wt.%) due to the codeposition of aluminum oxide particles in NiWP matrix. X-ray diffraction (XRD) studies carried out on as-plated deposits showed that both the deposits are X-ray amorphous with a grain size of around 3 nm. Phase transformation studies carried out on both the coatings showed that composite coatings exhibited better thermal stability compared to plain NiWP deposits. From the XRD studies it was found that metastable phases such as NiP and Ni5P2 present in the composite coatings heat treated at major exothermic peak temperature. Annealed composite coatings at various temperatures revealed higher microhardness values compared to plain NiWP deposits.  相似文献   

7.
Effects of plasma spraying conditions on wear resistance of nanostructured Al2O3-8 wt.%TiO2 coatings plasma-sprayed with nanopowders were investigated in this study. Five kinds of nanostructured coatings were plasma-sprayed on a low-carbon steel substrate by varying critical plasma spray parameter (CPSP) and spray distance. The coatings consisted of fully melted region of γ-Al2O3 and partially melted region, and the fraction of the partially melted regions and pores decreased with increasing CPSP or decreasing spray distance. The hardness and wear test results revealed that the hardness of the coatings increased with increasing CPSP or decreasing spray distance, and that the hardness increase generally led to the increase in wear resistance, although the hardness and wear resistance were not correlated in the coating fabricated with the low CPSP. The main wear mechanism was a delamination one in the coatings, but an abrasive wear mode also appeared in the coating fabricated with the low CPSP. According to these wear mechanisms, the improvement of wear resistance in the coating fabricated with the low CPSP could be explained because the improved resistance to fracture due to the presence of partially melted regions might compensate a deleterious effect of the hardness decrease.  相似文献   

8.
Novel YSZ (6 wt.% yttria partially stabilized zirconia)-(Al2O3/YAG) (alumina-yttrium aluminum garnet, Y3Al5O12) double-layer ceramic coatings were fabricated using the composite sol-gel and pressure filtration microwave sintering (PFMS) technologies. The thin Al2O3/YAG layer had good adherence with substrate and thick YSZ top layer, which presented the structure of micro-sized YAG particles embedded in nano-sized α-Al2O3 film. Cyclic oxidation tests at 1000 °C indicated that they possessed superior properties to resist oxidation of alloy and improve the spallation resistance. The thermal insulation capability tests at 1000 °C and 1100 °C indicate that the 250 μm coating had better thermal barrier effect than that of the 150 μm coating at different cooling gas rates. These beneficial effects should be mainly attributed to that, the oxidation rate of thermal grown oxides (TGO) scale is decreased by the “sealing effect” of α-Al2O3, the “reactive element effect”, and the reduced thermal stresses by means of nano/micro composite structure. This double-layer coating can be considered as a promising TBC.  相似文献   

9.
Bulk WC-Al2O3 composites prepared by spark plasma sintering   总被引:1,自引:0,他引:1  
WC and WC-Al2O3 materials without metallic binder addition were densified by spark plasma sintering in the range of 1800-1900 °C. The densification behavior, phase constitution, microstructure and mechanical properties of pure WC and WC-Al2O3 composite were investigated. The addition of Al2O3 facilitates sintering and increases the fracture toughness of the composites to a certain extent. An interesting phenomenon is found that a proper content of Al2O3 additive helps to limit the formation of W2C phase in sintered WC materials. The pure WC specimen possesses a hardness (HV10) of 25.71 GPa, fracture toughness of 4.54 MPa·m1/2, and transverse fracture strength of 862 MPa, while those of WC-6.8 vol.% Al2O3 composites are 24.48 GPa, 6.01 MPa·m1/2, and 1245 MPa respectively. The higher fracture toughness and transverse fracture strength of WC-6.8 vol.% Al2O3 are thought to result from the reduction of W2C phase, the crack-bridging by Al2O3 particles and the local change in fracture mode from intergranular to transgranular.  相似文献   

10.
A new processing concept has been developed to produce nano-structured metal-matrix composite coatings. This method combines sol-gel and electroless plating techniques to prepare highly dispersive oxide nano-particle reinforced composite coatings. Transparent TiO2 sol was added into the standard electroless plated Ni-P solution at a controlled rate to produce Ni-P-TiO2 nano-composite coatings on Mg alloys. The coating was found to have a crystalline structure. The nano-sized TiO2 particles (∼ 15 nm) were well dispersed into the Ni-P coating matrix during the co-deposition process. This technique can effectively avoid the agglomeration of nano-particles in the coating matrix. As a result, the microhardness of the composite coatings were significantly increased to ∼ 1025 HV200 compared to ∼ 710 HV200 of the conventional composite coatings produced with solid particle mixing methods. Correspondingly, the wear resistance of the new composite coatings was also greatly improved.  相似文献   

11.
Ni-Al2O3 composite coatings were prepared by using sediment co-deposition (SCD) technique from a Watt's type electrolyte containing nano-Al2O3 particles. The corrosion resistance and high temperature oxidation resistance of resulting composite coatings were investigated. It was found that the incorporation of nano-Al2O3 particles in Ni matrix refined the Ni crystal and changed the preferential orientation of composite coatings. Meanwhile, the corrosion and oxidation resistance were improved after the incorporation of nano-Al2O3 particles into Ni matrix. The nano-Al2O3 content in deposits plays an important role for improving the corrosion and oxidation protection. The corrosion and oxidation resistance of Ni-Al2O3 nano-composite coatings produced via SCD technique are superior to that of CEP technique. Compared to pure Ni and Ni-Al2O3 composite coatings fabricated using CEP technique, the Ni-7.58 wt.% Al2O3 composite coating obtained by SCD technique exhibits better corrosion resistance and enhanced high temperature oxidation resistance. Moreover, the mechanism of corrosion and high temperature oxidation resistance of Ni-Al2O3 nano-composite coatings are discussed.  相似文献   

12.
The conventional molybdenum alloys, lacking of hard particles enhancing wear property, have relative poor wear resistance though they are widely used in wear parts. To resolve the above question, Mo alloys reinforced by in-situ Al2O3 particles are developed using powder metallurgy method. The in-situ α-Al2O3 particles in molybdenum matrix are obtained by the decomposition of aluminum nitrate after liquid-solid incorporation of MoO2 and Al(NO3)3 aqueous solution. The α-Al2O3 particles well bonded with molybdenum distribute evenly in matrix of Mo alloys, which refine grains of alloys and increase hardness of alloys. The absolute density of alloy increases firstly and then decreases with the increase of Al2O3 content, while the relative density rises continuously. The friction coefficient of alloy, fluctuating around 0.5, is slightly influenced by Al2O3. However, the wear resistance of alloy obviously affected by the Al2O3 particles rises remarkably with the increasing of Al2O3 content. The Al2O3 particles can efficiently resist micro-cutting to protect molybdenum matrix, and therefore enhances the wear resistance of Mo alloy.  相似文献   

13.
Coatings of a composite material consisting of an Al-Si matrix reinforced with SiC particles were produced by laser cladding on UNS A03560 cast Al-alloy substrates from mixtures of powders of Al-12 wt.% Si alloy and SiC. The influence of the processing parameters on the microstructure and abrasive wear resistance of the coatings was studied. For an interaction time of 0.08 s and a power density of 330 MW/m2, corresponding to a specific energy of 26 MJ/m2, the interaction between SiC and liquid Al is limited and the reinforcement particles remain essentially undissolved. The coating's microstructure is formed of SiC particles dispersed in a matrix consisting of primary α-Al dendrites and interdendritic α-Al + Si eutectic. For interaction times of 0.3 and 0.45 s and a power density of 193 MW/m2, corresponding to specific energies of 58 and 87 MJ/m2, SiC reacts with molten Al and partially dissolves. The resulting microstructure consists of undissolved SiC particles, found mainly at the bottom of the clad tracks, where the maximum temperature reached during processing is lower, and Al4SiC4 and Si particles dispersed in a matrix of α-Al + Si eutectic. The coatings prepared with higher specific energy (58 MJ/m2) present a hardness of 250 V and an abrasive wear rate in three-body abrasion tests with SiC as abrasive of 1.7 × 10− 4 mm3/m, while those produced with 26 MJ/m2 present a hardness of 120 V and a wear rate of 0.43 × 10− 4 mm3/m. These results show that Al4SiC4 and Si increase the hardness of the material by dispersion hardening but do not contribute to its abrasive wear resistance, because they are softer than the abrasive particles, and confirm that the parameters used to prepare Al-Si-SiC composite coatings by laser cladding must be selected so that only minimal reactions occur between SiC and molten Al.  相似文献   

14.
The starting materials of Al2O3, TiO2, ZrO2 and CeO2 nanoparticles were agglomerated into sprayable feedstock powders and plasma sprayed to form nanostructured coatings. There were net structures and fused structures in plasma sprayed nanostructured Al2O3–13 wt.%TiO2 coatings. The net structures were derived from partially melted feedstock powders and the fused structures were derived from fully melted feedstock powders. The nanostructured Al2O3–13 wt.%TiO2 coatings possessed higher hardness, bonding strength and crack growth resistance than conventional Metco 130 coatings which were mainly composed of lamellar fused structures. The higher toughness and strength of nanostructured Al2O3–13 wt.%TiO2 coatings were mainly related to the obtained net structures.  相似文献   

15.
We attempted the room-temperature fabrication of Al2O3-based nanodiamond (ND) composite coating films on glass substrates by an aerosol deposition (AD) process to improve the anti-scratch and anti-smudge properties of the films. Submicron Al2O3 powder capable of fabricating transparent hard coating films was used as a base material for the starting powders, and ND treated by 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) was added to the Al2O3 to increase the hydrophobicity and anti-wear properties. The ND powder treated by PFOTES was mixed with the Al2O3 powder by ball milling to ratios of 0.01 wt.%, 0.03 wt.%, and 0.05 wt.% ND. The water contact angle (CA) of the Al2O3-ND composite coating films was increased as the ND ratio increased, and the maximum water CA among all the films was 110°. In contrast to the water CA, the Al2O3-ND composite coating films showed low transmittance values of below 50% at a wavelength of 550 nm due to the strong agglomeration of ND. To prevent the agglomeration of ND, the starting powders were mixed by attrition milling. As a result, Al2O3-ND composite coating films were produced that showed high transmittance values of close to 80%, even though the starting powder included 1.0 wt.% ND. In addition, the Al2O3-ND composite coating films had a high water CA of 109° and superior anti-wear properties compared to those of glass substrates.  相似文献   

16.
Al2O3, Al2O3-Cr2O3 and Cr2O3 coatings were deposited by atmospheric plasma spraying. Phase composition of powders and as-sprayed coatings was determined by X-ray diffraction. Electron probe microanalyzer was employed to investigate the polished and fractured surface morphologies of the coatings. Mechanical properties including microhardness, fracture toughness and bending strength were evaluated. The results indicate that the addition of Cr2O3 is conducive to the stabilization of α-Al2O3. Compared with the pure Al2O3 and Cr2O3 coatings, Al2O3-Cr2O3 composite coatings show lower porosities and denser structures. Heterogeneous nucleation of α-Al2O3 occurs over the isostructural Cr2O3 lamellae and partial solid solution of Al2O3 and Cr2O3 might be occurring as well. Furthermore, grain refining and solid solution strengthening facilitate the mechanical property enhancement of Al2O3-Cr2O3 composite coatings.  相似文献   

17.
This paper reports a study of how the choice of plasma spray parameters, used during deposition of Al2O3-13%TiO2 coatings on carbon steel, influences the cavitation erosion properties of such coatings. The parameters studied are the power feeding rate and hydrogen flow rate. The surface and cross section of coatings before and after cavitation were also observed by scanning electron microscopy (SEM). The phases present in the coatings were characterized by X-ray diffraction method (XRD). The microscopic observations were used to study the inter-lamellar connection, porosity, unmelted particles and so on inside the coating. We also measured the roughness, microhardness, adhesion strength and cavitation erosion of the coatings. The XRD results showed that the coating includes different allotropes of Al2O3 such as α and γ. The cavitation erosion studies of the coatings were conducted by ultrasonic cavitation testing on the basis of ASTM G32 standard. It was found that cavitation erosion is accelerated around the unmelted particles and porosities. The results reveal that the cavitation resistance of the coating is determined by its microstructure and that increasing discontinuities (inside the coating) reduce its cavitation resistance. We have found that the coating obtained at hydrogen gas flow rate of 16 L/min and powder feeding rate of 20 g/min has the best cavitation resistance.  相似文献   

18.
Electrophoretic deposition (EPD), a versatile and cost-effective process, was employed to prepare Al2O3-Y2O3 composite coatings on a γ-TiAl based alloy. SEM observations showed that the composite coatings were compact and consisted of uniform nano-particles. Cyclic oxidation at 1000 °C indicated that the γ-TiAl alloy exhibited a cyclic spallation-oxidation behavior under cyclic oxidation while the Al2O3-Y2O3 composite coatings improved the oxidation and scale spallation resistance of γ-TiAl alloy significantly due to the suppression of outward diffusion of Ti in the γ-TiAl substrate and the promotion of selective oxidation of Al in the γ-TiAl alloy induced by the composite coating.  相似文献   

19.
A novel electroplating method has been developed to produce nanocrystalline metal-matrix nano-structured composite coatings. A small amount of transparent TiO2 sol was added into the traditional electroplating Ni solution, leading to the formation of nanocrystalline Ni-TiO2 composite coatings. These coatings have a smooth surface. The Ni nodules changed from traditional pyramid-like shape to spherical shape. The grain size of Ni was also significantly reduced to the level of 50 nm. It was found that the amorphous anatase TiO2 nano-particles (∼ 10 nm) were highly dispersed in the coating matrix. The microhardness was significantly increased from 320 HV100 of the traditional Ni coating to 430 HV100 of the novel composite coating with 3.26 wt.% TiO2. Correspondingly, the wear resistance of the composite coating was improved by ∼ 50%.  相似文献   

20.
Al18B4O33w/Co composite particles were prepared successfully through electroless plating Co on Al18B4O33 whiskers. The growth behavior of the coatings, the effect of the process parameters and the electromagnetic properties of the prepared Al18B4O33w/Co composite particles were investigated. The reduced Co nucleated first on the pre-activated surface of the whiskers to form insular particles which then grew larger gradually and eventually merged together to form continuous coatings. The reaction rate increased but the mass gain decreased with the increase of the bath pH and the bath temperature. The crystallinity of the deposited Co decreased with the increase of phosphorous content as well as the bath temperature. The effect of loading is much weaker compare to that of bath pH and bath temperature. The permittivity and the permeability of the prepared Al18B4O33w/Co composite particles are markedly higher than those of the raw Al18B4O33 whiskers in microwave band. Relaxation resonance is found in the samples with thick Co coatings due to the presence of eddy current, which deteriorates the permeability of the Al18B4O33w/Co composite particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号